Resting-state EEG-correlated fMRI
Why, how and what

Louis Lemieux

Department of Clinical and Experimental Epilepsy
UCL Institute of Neurology, London
&
National Society for Epilepsy
Chalfont St Peter, Buckinghamshire, UK
Objectives of this presentation

• Provide guidelines for choosing synchronous multi-modal acquisitions

• Describe EEG-fMRI methodology
 – Insure adequate EEG and image data quality
 – Data analysis strategies

• Illustrate applications in Epilepsy
 – Mapping in Epilepsy
 – Networks in Epilepsy
 – Fast signal changes
Models of brain activity have many *observables*:

- Electrical
- Magnetic
- Chemical
- Vascular
- Optical
- NMR
- etc.

Understanding their *interdependence* is key

What happens to parameter Y when parameter X changes?

Space science analogy:

“Pack the Mars lander with as many instruments as possible”
EEG & fMRI

EEG
- Important observable of brain activity in humans
- Reflects neuronal signal generation and synchronisation
- Important clinical tool in epilepsy (*epileptic spikes*, seizures, etc)
- Non-invasive (scalp) & cheap
- Limitations in localisation

fMRI
- Allows tomographic visualisation of haemodynamic changes associated with changes in brain activity
- Has better temporal resolution than PET (…for epileptic spikes)
- Has poorer temporal resolution than EEG
- Is non-invasive (BOLD)
BOLD: Blood Oxygenation Level-Dependent effect

- fMRI acquisition is sensitive to local differences in magnetic susceptibility (an intrinsic property of any material)
- Deoxyhemoglobin and oxyhemoglobin have different susceptibilities

Increased neuronal activity

Increased metabolic rate

Increased volume

Increased blood flow - Oxygen level exceeds metabolic demand

Decreased deoxy-Hb / oxy-Hb

Increased MR signal
BOLD FMRI

Effect of blood flow increase

Resting cortex

Activated cortex

arteriole

venule

capillary bed

Deoxy-Hb

Oxy-Hb
BOLD FMRI
Hemodynamic response function

The SPM2 Canonical Haemodynamic Response Function (HRF)
fMRI: Processing and analysis

SPM software: data pipeline

- Time-series data
- Kernel
- Design matrix
- Statistical parametric map

- Realignement
- Smoothing
- General linear model
- Statistical inference

- Normalisation
- Template
- Parameter estimates

- Gaussian field theory

$p < 0.05$

Taken from SPM course notes, UCL
Synchrony of multi-modal acquisitions

1. Different sessions
 Fusion: comparison of averaged effects

2. Simultaneous
 Fusion: comparison of individual events

3. Interleaved
 – Special case of 2, when time scales allow (e.g. brief events followed by BOLD response, EEG patterns with long time scales)
The **need** for synchronous acquisitions

Principle: guarantee comparability of data across modalities

Criteria: brain state and effects of interest

1. Reproducible and predictable brain state
 - Different sessions
 - Study: averaged / typical effects only

2. Unpredictable, irreproducible or unique brain state:
 - Simultaneous (synchronous) acquisitions
 - Study: individual events – trial-by-trial
 - or averaged / typical effects
EEG-correlated fMRI: ‘EEG-fMRI’

EEG used to define event onsets

EEG-fMRI in Epilepsy:

- The aims of such studies are:
 - Demonstrate BOLD changes associated with epileptiform discharges
 - Localise the generators of epileptiform discharges
 - Improve our understanding of the underlying mechanisms of generation of epileptiform discharges

EEG-fMRI of normal rhythms

EP-fMRI
Averaged vs. trial-by-trial: The neuronal basis for BOLD decreases

[Shmuel et al, 2006]
fMRI:
Basic design and analytical principles

Standard (paradigm-based) fMRI

• Acquire two types of scans
 – Brain state 1 vs state 2 (e.g. active vs. rest)

• Perform t-test at each voxel
 – Scans 2 vs. scans 1

• Apply statistical threshold

• Present result as activation map
Unpredictable activity: Epilepsy
EEG-fMRI Methodology: problems and solutions

- **Patient safety:**
 - Risk of RF burning @ 1.5T and 3T
 - Use of current-limiting resistors
 - Use transmit head coil

- **Image quality:**
 - Signal loss due field perturbation around (metallic) electrodes
 - RF shielding
 - RF interference due to presence of electronic EEG equipment
 - Choice of component materials and RF shielding

- **EEG quality:**
 - Pulse & imaging artifact removal
Safety: Electrodes and leads

Mechanism: Induced currents in loop

(EEG lead-EEG electrode-patient-EEG electrodes-EEG lead-EEG amp)

Health risks:
- Very low frequency: Ulcers
- 1kHz: Stimulation
- RF: ‘RF burning’

Safety guidelines:
- Body temperature elevation
- Contact current (through conductor in contact with body)

[Lemieux et al, 1997]
Image quality: passive components

Mechanisms:

• B_0 perturbation due component ferro / para-magnetism
• RF perturbation (shielding) due presence of (numerous) electrodes

[Ag/AgCl electrodes]

[Au electrodes]

[K. Krakow et al., 1998]
Image quality: Effect of passive EEG components

Local effect of electrodes

Global effect on SNR_t

<table>
<thead>
<tr>
<th>B_0 (Tesla)</th>
<th>No cap mean ± SD</th>
<th>32 electrode cap mean ± SD</th>
<th>% Change</th>
<th>64 electrode cap mean ± SD</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.0166 ± 0.0007</td>
<td>0.0214 ± 0.0005</td>
<td>27 ± 8</td>
<td>0.0225 ± 0.0004</td>
<td>26 ± 10</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0097 ± 0.0001</td>
<td>0.0102 ± 0.0004</td>
<td>4 ± 4</td>
<td>0.0106 ± 0.0002</td>
<td>15 ± 5</td>
</tr>
<tr>
<td>7.0</td>
<td>0.0076 ± 0.0003</td>
<td>0.0089 ± 0.0002</td>
<td>18 ± 4</td>
<td>0.0097 ± 0.0007</td>
<td>28 ± 13</td>
</tr>
</tbody>
</table>

32-channel cap @ 3T

[Mullinger et al, 2007]
Image quality:
Effect of active components

Artefact source:

• RF radiation from EEG recording electronics
• Can overlap with imaging bandwidth
• Usually in the form of regular pattern

Tests:

• Phantom (flip angle = 0)
• Inspection of background
Image quality:
Effect of active EEG components

<table>
<thead>
<tr>
<th>No amplifier</th>
<th>With amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF noise test</td>
<td></td>
</tr>
<tr>
<td>EPI image</td>
<td></td>
</tr>
</tbody>
</table>
EEG Quality

Two main problems:

- Image acquisition artefact
- Cardiac pulse artefact

Two main strategies:

- Avoid and/or minimize at source
- Software correction methods

NOT a formal comparison of published methods
EEG quality: pulse artefact

- (Sometimes called *ballistocardiogram*)
- Can mask spikes and distort ERP’s
 - Can be correlated to task (ERP)
- Present in most subjects but spatial distribution highly variable across subjects
 - Stronger anteriorly [Allen]
- Origin:
 1. Micro motion of body (B_0)/electrodes/wires due to heart beat
 2. Blood flow (‘Hall effect’)?

![Intra-MRI EEG](image)

50 uV 1 sec. LF= 0.12 Hz HF= 30 Hz
Pulse artefact reduction: main approaches

- Mechanical
 - Head vacuum cushion [Benar et al]
 - Wire immobilisation

- Recording
 - Bipolar montage to limit loop area [Goldman et al]

- Running average artefact subtraction
- Adaptive filtering
- Temporal PCA/ICA
Pulse artifact reduction: running average subtraction

Misconception: does not account at all for timing/morphological variability

[Allen et al., Neuroimage 1998]
Running average subtraction

No pulse artifact subtraction

- Fp2-F4
- F4-C4
- C4-P4
- P4-O2
- Fp1-F3
- F3-C3
- C3-P3
- P3-O1
- ECG

With pulse artifact subtraction

- Fp2-F4
- F4-C4
- C4-P4
- P4-O2
- Fp1-F3
- F3-C3
- C3-P3
- P3-O1
- ECG

50 μV
1 sec.
LF = 0.12 Hz HF = 30 Hz

[Allen et al., Neuroimage 1998]
Spike-triggered fMRI

25 uV

- Fp2-F8
- F8-T4
- T4-T6
- T6-O2
- Fp1-F7
- F7-T3
- T3-T5
- T5-O1
- ECG1-ECG2

1 sec.
Pulse artefact correction methods: Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>- Head vacuum cushion</td>
</tr>
<tr>
<td></td>
<td>- Wire immobilisation</td>
</tr>
<tr>
<td>Recording</td>
<td>- Bipolar montage to limit loop area [Goldman et al]</td>
</tr>
<tr>
<td>(Running) average artefact subtraction</td>
<td>[Allen, Goldman]</td>
</tr>
<tr>
<td></td>
<td>- Requires time marker (ECG)</td>
</tr>
<tr>
<td></td>
<td>- Issue: stationarity</td>
</tr>
<tr>
<td></td>
<td>- Real time possible</td>
</tr>
<tr>
<td></td>
<td>- Enhancements: Wavelet denoising [Kim]</td>
</tr>
<tr>
<td>Adaptive filtering</td>
<td>[Bonmassar, In]</td>
</tr>
<tr>
<td></td>
<td>- Requires time marker (ECG, EOG) OR motion sensor</td>
</tr>
<tr>
<td></td>
<td>- Real time possible</td>
</tr>
<tr>
<td>(Temporal) SDV/PCA/ICA</td>
<td>[Benar, Niazy, Otzenberg, Srivastava, Nakamura, Briselli]</td>
</tr>
<tr>
<td></td>
<td>- No need for time markers</td>
</tr>
<tr>
<td></td>
<td>- No assumption of stationarity</td>
</tr>
<tr>
<td></td>
<td>- Issue: component selection (stochastic behaviour of solution)</td>
</tr>
<tr>
<td></td>
<td>- Real-time implementation?</td>
</tr>
</tbody>
</table>
Continuous EEG-fMRI

Fp1-Pz
F7 – Pz
T3 – Pz
T5 – Pz
O1 – Pz
Fp2 – Pz
F8 – Pz
T4 – Pz
T6 – Pz
O2 – Pz
Fp1 – F7
F7 – T3
T3 – T5
T5 – O1
Fp2 – F8
F8 – T4
T4 – T6
T6 – O2
ECG

50uV

1 Second

LF = 0.5 Hz HF = 45 Hz
Continuous EEG-fMRI

Extra technical hurdle:

The image acquisition artifact

- Obliterates the EEG
- Origin: mainly gradient switching
- Much larger than EEG (100 x)
- EEG and scanning frequency bands overlap

[Anami, 2003]
Avoiding or limiting imaging artefact in EEG

- Mechanical means
 - All equipment secure
- Interleaved (periodic) EEG-fMRI
 - Periodic fMRI scanning with breaks to visualise EEG
 - Useful for the study of:
 - Prolonged spontaneous EEG events:
 - Sleep patterns, Seizures
 - Controlled events / patterns:
 - Modulated EEG (Alpha) [Goldman et al., 2002]
 - Evoked responses [Kruggel et al., 2001; Bonmassar et al., 2002]

* Imposes limits on EEG events that can be studied

- Stepping Stone acquisition scheme [Anami et al., 2003]
EEG system to perform continuous EEG-fMRI in epilepsy

• EEG recording system:
 – Dynamic range: 33mv, resolution 2μV
 – Sampling: 5kHz

• Acquire scanner slice acquisition pulse

• Calculate and subtract averaged artifact, synchronised to each MRI slice (or volume) acquisition

• Filtering (50Hz) and down-sampling

• Adaptive noise cancellation to reduce residual

[Allen et al., 2000]
Continuous EEG Correlated fMRI

Fp1-Pz
F7 – Pz
T3 – Pz
T5 – Pz
O1 – Pz
Fp2 – Pz
F8 – Pz
T4 – Pz
T6 – Pz
O2 – Pz
Fp1 – F7
F7 – T3
T3 – T5
T5 – O1
Fp2 – F8
F8 – T4
T4 – T6
T6 – O2
ECG
OSC

1 Second LF = 0.5 Hz HF = 45 Hz
50uV
Continuous EEG Correlated fMRI

Fp1-Pz F7 – Pz T3 – Pz T5 – Pz O1 – Pz Fp2 – Pz F8 – Pz T4 – Pz T6 – Pz O2 – Pz Fp1 – F7 F7 – T3 T3 – T5 T5 – O1 Fp2 – F8 F8 – T4 T4 – T6 T6 – O2 ECG OSC

1 Second

50uV

LF = 0.5 Hz HF = 45 Hz
Continuous EEG Correlated fMRI
Averaged imaging artifact subtraction: Results

• Median artifact:
 – Raw EEG: 4000 μV
 – Final: 8 μV

• Spectral Analysis:
 – 10-18% difference (outside vs. scanning)

• Spike identification
 – Raw EEG: 3% correct
 – Corrected EEG: 90% correct
Averaged artefact subtraction improvement: clock synchronisation

Problem: averaged artefact subtraction limited by EEG sampling rate
Principle: EEG digitization and MR acquisition synchronised through hardware link

Idea of M Cohen [HBM, 2001]

[Mendelkow, 2006]
Ritter et al’s comparative study

Visual stimulation paradigm
All data from interleaved EEG-fMRI

5 variants of the Allen method
1 new local implementation
• with interpolation
2 versions of Brain Vision Analyzer
• with / w/o template drift
2 versions of FASTR (Allen + Niazy)
• With / w/o limit on OBS over-fitting

➢ Very little difference in performance between latest versions
➢ FASTR tends to attenuate a bit more
➢ Old version of BV Analyzer: strong effects at high frequencies

[Ritter et al., MRI, 2007]
Image acquisition artifact removal: other approaches

• Fourier filtering
 [Hoffmann et al, 2000]

• PCA with gradient pulse
 [Logothetis et al., 2001]

• Acquire artefact model, match scale and subtract
 [Gareffa et al., 2003]
Artefact reduction performance assessment

- **Must assess artefact reduction and feature preservation**
- **Spectral power**
 - Normalised power spectrum ratio:
 \[
 \text{INPS} = \frac{\sum_{i=1}^{N} P_i^{\text{before}}}{\sum_{i=1}^{N} P_i^{\text{after}}}
 \]
- **Event of interest identification**
 - Epileptiform discharges (spikes,
- **Event of interest characteristic**
 - EP latency, amplitude
- **Source localisation / EEG field topography**
- fMRI results

Between conditions: $B_0 = \neq 0$
scanning ON/OFF
Scanner static field (B_0) strength effects

Pulse artefact: $\sim B_0$

Image quality
- Passive components: $\sim B_0$
- Active components: frequency band specific
- RF shielding from cap(?)

High field (>3T)
- Safety issues [Angelone et al.]
- Image quality
 - “Ink cap” [Vassios et al, 2007]
 - Electrode compatibility [Stevens et al, 2007]
- EEG quality
 - Pulse artefact [Bowtell, HBM 2006]
Methodology: Conclusions

• Need to consider carefully synchronicity requirements of experiment
• Data degradation always an issue in simultaneous-continuous experiments
• Interleaved acquisitions suitable for ERP’s
• Continuing developments in EEG artefact correction: pulse artefact
• Standard evaluation protocol lacking
• Continuous EEG-fMRI emerging as an important tool for the study of spontaneous brain activity
Aims of EEG-fMRI in Epilepsy

- Characterise the epileptogenic network (‘focus’)
 - Localisation
 - Syndrome classification
 - Haemodynamics
 - time course of change
 - network

- Map BOLD correlates of focal spikes &
 generalised spike-wave discharges
Application in Epilepsy
Types of EEG Epileptiform Activity

• Focal
 – Focal spikes (interictal)
 – Focal seizures (ictal)

• Generalised
 – Generalised spike-wave (GSW) (interictal)
 – GSW – Absence seizure (ictal)
The localisation problem in epilepsy

• Pre-operative assessment of drug-resistant cases
 – Aim: identify focus and suitability for resection
 – Methods:
 • EEG/MEG (visual, source analysis)
 • MRI
 • Video-telemetry
 • PET, SPECT

• Unclear? Conflicting?
 – Consider intracranial EEG
Focal spike

- Brief (<100ms)
- Unpredictable
- Sub-clinical
- Amplitude: ~10’s of μV
- Spatially linked to the focus
- Generator model: small cortical dipolar patch
- Paroxysmal Depolarisation Shifts (PDS): Excitatory and inhibitory signalling
 - Rapid bursts of action potentials riding on a slower wave of depolarisation
- ‘Pure EEG events’ / Mini seizures?
- Why does a spike occur (when it does)?
- Associated HRF?
General methodology

• Patient selection:
 – High EEG activity (spike rate)
 – Pre-implantation of intracranial electrodes

• Data acquisition strategy
 – Subject at rest
 – Simultaneous, continuous EEG-MRI
 • fMRI:
 – GE EPI BOLD [/ +ASL]
 – Whole-brain coverage (no prior hypothesis) [ASL: limited coverage]
 • EEG:
 – 12-64 channels
 – On-line artefacts removal

• GLM (SPM)
 – EEG -> fMRI
 – Motion effects
 – Thresh.: FWE <0.05 (corr.; GRF and uncorrected);
 – No min. cluster size
FMRI model building in Epilepsy (I)

1. **EEG events of interest**
 - Detection
 - Categorisation / grouping

2. **Event representation**
 - Individual brief events (spikes)
 - Runs of / long events

3. **Effects of no interest**
 - Motion
1. EEG events in fMRI time
 ➢ Vector of onsets for each event type

2. BOLD response for each event models

3. Linear model of BOLD
 ➢ convolution of 1 and 2
Focal epilepsy
Focal epilepsy: Seizure

Case summary:
- Tonic-clonic seizures
- MRI: normal
- Left temp. spikes
- EEG-fMRI: electrographic seizure

[Salek-Haddadi et al. 2002]
The HRF in Focal Epilepsy

Fitted Fourier basis set:

25 μV
Fp2-F8
F8-T4
T4-T6
T6-O2
Fp1-F7
F7-T3
T3-T5
T5-O1
ECG1-ECG2

fitted response +/- standard error

[Lesieux et al., 2001]
The HRF in Epilepsy: Non-canonical responses

Case 8: Left temporal spikes

Fourier basis set

HRF+TD model

Time-shifted Fourier model

HRF+TD
Scalp EEG sensitivity / bias
The baseline / sensitivity problem

Inside the brain
On the scalp
No EEG activity... What to do?

Spatial ICA of fMRI time series
Problems:
 Multiplicity of components
 Meaning
(Solution:)
 IC fingerprinting [De Martino et al., 2007]

Epilepsy result:

[De Martino et al., 2007]

[Rodionov et al., 2007]
Generalised epilepsies
(generalised spike wave [3Hz])
Generalised discharge: Spike & wave

Widely distributed over the cortex

Underlying neurophysiology:

- Thalamo-cortical circuitry; neocortical origin \([\text{Timofeev & Steriade, 2004}]\)

- **Spike**: rhythmic PDS's (similar to focal spikes)

- **Wave**: hyperpolarisation: cortical/thalamocortical ‘silence’

Interictal vs. ictal (‘absence seizure’)

- Effect of duration of discharge epoch / observation

Haemodynamic correlates?
EEG-fMRI of absence seizures

Case report:
Juvenile Absence Epilepsy
MRI normal

Regressor:

SPM:

[Salek-Haddadi et al., 2003]
EEG-fMRI of absence seizures - QS 1.5T series

Group analysis

N=18

SGE

Thalamus↑

↑

↓

↓

↑

↑

↑

(a)

N=10

(random effects)

[Hamandi et al., 2006]
Precuneus / Vigilance / Epilepsy
Altered vigilance:
- Focal spikes
- Absence seizures

Sleep

Vegetative state

General anaesthesia

“Default mode”

Rest

Perception + action

[Gusnard DA, Raichle ME]
Theories of GSW generation

- The historical debate: thalamus versus cortex in pathophysiology of GSWDs → from the “Centroencephalic Theory” to the “Corticoreticular Theory”

- Most of the evidence comes from invasive electrophysiological and neurochemical recordings in animals. Few observations in humans (PET, SPECT, H-MRS) (Bernasconi 2003; Prevett, 1995; Yeni, 2000)
Dynamic causal models of GSW generation

• Thalamus
• Frontal cortex (medial or middle frontal gyrus, BA10)
• Precuneus (BA7)
Dynamic causal models of GSW generation

Model A: (Centrencephalic)
- GSW drives BA7 and BA10
- BA10 drives thalamus

Model B: (Cortico/corticoreticular)
- GSW drives BA7 and BA10
- BA10 drives thalamus

Model C: (Precuneus theory)
- GSW drives BA7 and BA10
- BA10 drives thalamus

[Vaudano, submitted]
Dynamic causal models of GSW generation

Results

Model A (Thalamus) in 2/9

Model B (Frontal) in 0

Model C (Precuneus) in 6/9

(chance probability <0.008)
“Neuroelectric” / “neuronal currents” / “direct detection” MRI
Neuro-electric MRI of GSW?

[Liston et al., 2005]
Concluding remarks

• EEG-fMRI
 – Ensures coherent datasets
 – Allows study of spontaneous variations in brain activity
 – Has pros and cons of both modalities

• Implementation remains demanding
 – Data quality: artefact correction and quality control

• What does EEG-fMRI image?
 – EEG generators (~) + downstream effects
 – Networks: some new insights into causality

• Future:
 – Balance of benefits vs. costs?
 – Symmetric fusion: EEG & fMRI generative model
Team & collaborators

P Allen G Alarcon (King’s, London)
S Cannadathu R Bowtell (Nottingham)
D Carmichael P Chauvel (Marseille)
JS Duncan J Daunizeau (London)
K Friston (FIL, UCL) F De Martino (Maastricht)
K Hamandi E Formisano (Maastricht)
H Laufs M Guye (Marseille)
A McEvoy C Kesavadas (Trivandrum)
R Rodionov S Kiebel (London)
M Symms J de Munck (Amsterdam)
R Thornton R Turner (Leipzig)
A Vaudano
M Walker

Work funded by:
MRC
Wellcome Trust
Action Medical Research
Thank you