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Abstract—A deformable registration method is proposed for reg-
istering a normal brain atlas with images of brain tumor patients.
The registration is facilitated by first simulating the tumor mass
effect in the normal atlas in order to create an atlas image that
is as similar as possible to the patient’s image. An optimization
framework is used to optimize the location of tumor seed as well
as other parameters of the tumor growth model, based on the pat-
tern of deformation around the tumor region. In particular, the
optimization is implemented in a multiresolution and hierarchical
scheme, and it is accelerated by using a principal component anal-
ysis (PCA)-based model of tumor growth and mass effect, trained
on a computationally more expensive biomechanical model. Vali-
dation on simulated and real images shows that the proposed reg-
istration framework, referred to as ORBIT (optimization of tumor
parameters and registration of brain images with tumors), outper-
forms other available registration methods particularly for the re-
gions close to the tumor, and it has the potential to assist in con-
structing statistical atlases from tumor-diseased brain images.

Index Terms—Atlas registration, brain tumor, deformable regis-
tration, image attributes, tumor growth model.

I. INTRODUCTION

S TATISTICAL atlases have been used in a variety of studies
of normal brain development and aging, as well as of brain

diseases [1]–[7], but they have rarely been used in studies of
brain cancer. Building statistical models of brain tumor evolu-
tion could help gain insight into the brain tumor disease. For
example, population-based statistical atlases can potentially in-
dicate whether a multiparametric imaging, or proximity to cer-
tain fiber tracts, profile suggests higher likelihood of tumor pro-
gression in a particular direction. Moreover, augmenting these
models with tumor size and location relative to brain structures,
could further improve predictive accuracy. The construction of
such statistical models requires the integration of a variety of
patient data, such as conventional magnetic resonance imaging
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(MRI), perfusion, and diffusion-tensor imaging (DTI) of a large
number of patients, into the same space and also requires the
linking of all these data to outcome measures. For this purpose,
a registration method is needed that can map all the imaging data
to a common space (normal atlas). While the problem of coreg-
istering brain images of healthy subjects has been addressed by
many approaches in the literature, the normalization of tumor
diseased images into a common template space, is still a very
challenging problem that has motivated our work.

Besides their potential value in predicting tumor progression,
anatomical and functional statistical atlases or models are also
useful in neurosurgical treatment planning, since they can inte-
grate diverse information about anatomical and functional vari-
ability, thereby helping design treatment plans that minimize the
risk for significant functional impairment of the patient or facil-
itate safe dose escalation. Here again, a method that can register
a statistical atlas (image without disease) to the patient-specific
brain tumor image is required.

Most of the available registration methods in neuroimaging
[8]–[29] are designed to register a normal atlas with generally
normal neuroanatomies. Direct application of these methods to
images of tumor patients can lead to poor registration around
the tumor region, due to large deformations and lack of clear
definition of anatomical detail in a patient’s images. Specifi-
cally, in the images with tumor, the fundamental assumption
of topological equivalence between the atlas and the patient’s
image, which is almost ubiquitous in deformable registration
methods, is violated due to the anatomical changes caused by
tissue death and tumor emergence. Moreover, the confounding
effects of edema and tumor infiltration, which cause changes
in the image intensities, render the task of finding correspon-
dences very difficult. Finally, the large distortions caused by the
mass effect of a growing tumor violate the usual assumption of
smoothness of the deformation fields.

The framework proposed herein aims to facilitate the registra-
tion process by creating an atlas image that is as similar as pos-
sible to the patient’s image, in the sense that it contains a tumor
and mass effect similar to those in the patient’s image. Specif-
ically, it is based on the idea of first creating a topologically
equivalent atlas image by replacing part of the healthy tissue
with a tumor seed and then decoupling the total deformation
(between atlas and patient’s image) into two components, i.e.,
the deformation caused by the tumor mass effect and the defor-
mation due to the intersubject differences. The tumor-induced
deformation can be calculated by a biomechanical model of soft
tissue deformation [30], [31], whereas the inter-subject defor-
mation can be calculated by a deformable registration method.
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In other words, the tumor modeling component aims to resolve
both the geometric discrepancies from the physiologic process
of tumor growth and the image differences from the tumor emer-
gence. The registration component is then based on the assump-
tion that 1) there is equivalent image content between the atlas
with simulated tumor and the patient’s image, and 2) the defor-
mation between the tumor-bearing images is smooth, similar to
normal image registration.

Similar approaches of brain tumor image registration have al-
ready been investigated [32]–[36]. Some of these methods use
a normal-to-normal brain matching method after shrinking the
tumor in the patient’s images [32]. Some apply first an affine
transformation between the normal atlas and the patient’s image
and subsequently either use a rich tumor simulation model of
mass-effect and invasion without further accounting for the in-
tersubject differences [35], or use a simplified radial growth
model [37] refined by a nonrigid deformation based on optical
flow [33], [34]. Other methods just combine the Talairach trans-
formation with the simple radial expansion model [36] in order
to speed up the algorithm, or do not deal with tumor growth and
mass effect at all, but manually place a mask on and around
the tumor, in order to ignore those regions during the image
matching process since they are regarded as unreliable [38].
These approaches are based on oversimplified assumptions, be-
cause 1) tumor growth cannot be simply modeled as a radial ex-
pansion process, 2) the tumor seed cannot be simply estimated
by calculating the mass center of tumor or shrinking the tumor,
and 3) the morphological variability across individuals can not
be captured by an affine transformation. The study presented in
this paper, addresses all of these three issues, but gives special
emphasis to the last two, since the first issue has been addressed
in previous work [30]–[32], [39].

An earlier approach of our group for registering brain tumor
images to a normal atlas, which avoids the previous simplifi-
cations, has been presented in [40]. We proposed a maximum
likelihood framework for estimating the tumor model param-
eters by collecting statistics obtained from mass effect simu-
lations. Although this method reported promising results for
small quasi spherical tumors, more experiments on different
kind of tumors revealed some limitations, which motivated us
to examine alternative methodologies. First, this method applied
normal-to-normal registration, as part of both the model param-
eters estimation and the final warping of the tumor-bearing im-
ages, whereas the new approach uses a registration method de-
veloped for brain images under the presence of tumors (in cor-
responding or close locations to each other). Also, the method
in [40] was a statistical approach; it did not apply optimization
and therefore did not provide any measure of confidence on the
final solution (optimality criterion). Additionally, the method in
[40] retrieved the tumor model parameters based only on the
tumor-induced deformation. Especially under the assumption of
the brain being a homogenous material, that is, having the same
material properties for white and gray matter, local information
is lost. In the current method, additionally to the information
from the tumor-induced deformation fields, we incorporate local
information from the image content, thus increasing the sensi-
tivity of the optimization procedure. Finally, perhaps most im-
portantly, the statistically-based method of [40] required a very

Fig. 1. Flowchart summarizing the basic steps for registration of a normal brain
atlas with the image of a brain tumor patient.

large number of simulations of tumor growth, in order for shape
statistics to be gathered. This renders this approach quite lim-
iting in many practical situations.

Built upon the idea of HAMMER registration algorithm
developed for normal brain registration [20], in this paper
we present a framework for optimization (of tumor model
parameters) and registration of brain images with tumors, that
we shall from here on refer to as ORBIT. The main advantages
of the ORBIT algorithm are 1) the incorporation of a similarity
criterion that uses two kinds of information, namely tissue
properties and spatial location relative to tumor, and 2) the de-
velopment of a deformation strategy that is robust to unreliable
matches caused by the presence of tumor. Moreover, one of the
novelties of the proposed framework is the estimation of the
optimal tumor-related parameters (including the origin of the
tumor and the amount of tissue death), via optimization of a
criterion reflecting the elastic stretching energy and the image
similarity. Robustness is achieved by applying the optimization
in a multiresolution scheme. Also, efficiency is achieved by
replacing the expensive nonlinear biomechanical model with
a principal component analysis (PCA)-based model of tumor
growth, as well as by refining the warping throughout the
optimization only in the regions of low confidence.

The rest of the paper is organized as follows. In Section II,
we describe the basic components of ORBIT, i.e., the PCA-
based model for simulating tumor mass effect, the registration
method for tumor-bearing images, and the criterion for opti-
mizing tumor parameters. The implementation details of these
methods in a multi-resolution framework are introduced in Sec-
tion III. In Section IV, we show the efficacy of this framework
on both synthetic and clinical cases, i.e., by providing the sen-
sitivity of registration to the tumor parameter estimation. The
paper concludes in Section V.

II. METHODS

The basic components of ORBIT include: 1) a simulation
model for tumor growth and mass effect, 2) a deformable regis-
tration method for tumor-bearing images, and 3) an optimization
method for estimating the parameters of the tumor growth and
mass effect model. Fig. 1 summarizes a closed-loop process for
registering a normal brain atlas to a tumor-bearing image, using
all three components. The illustrated mapping is useful for trans-
ferring information from the atlas to the patient’s space. The
normalization of the patient’s image into a common (normal)
atlas space can be performed by the reverse mapping.
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A. Local PCA-Based Model for Simulating Tumor Mass Effect

The simulation of tumor mass effect is based on the ap-
plication of a statistical model that describes the variation in
deformability of the atlas brain due to different tumor model
parameters. One way of modeling tumor growth and mass
effect is via biomechanical simulators. Two examples of such
simulators are based on 1) finite element models of nonlinear
elasticity [30], [31] and 2) incremental linear elasticity models
on regular grids [39]. However, incorporating such biomechan-
ical models (especially the first one) into an iterative registration
procedure could be computationally prohibitive. In this paper,
we have circumvented this limitation by using the mass effect
model of [30], [31] to train a PCA-based mass effect model and
then using it in the registration framework. It is worth noting
that the PCA-based tumor growth and mass effect simulation is
extremely fast, since it can be achieved via linear combination
of a relatively small number of principal components (defor-
mations), thereby leaving the burden of simulation to offline
training using the costly biomechanical model. As a note, any
biomechanical simulator could be used for training purposes,
subject always to the requirements of each application. As our
experiments will show, this approach leads to very efficient
approximation of the types of deformations caused by tumor
growth, especially in view of the very approximating nature of
any such modeling method.

The use of a statistical model for simulating the tumor mass
effect involves the following steps. First, the parameters that are
necessary for the simulation of tumor-induced deformation are
defined. Then, the training step is presented. Finally, the inter-
polation step, on how to produce an estimator with continuous
values of the model parameters, is given.

1) Definition of Tumor Model Parameters: The applied
biomechanical model simulates the displacement of structures
caused by the tumor mass effect and edema swelling, as well as
tissue death in a somewhat simplistic way, since our goal here
is merely to construct an atlas that looks similar to the patient’s
images and to facilitate subsequent deformable registration.
The tumor mass effect is simulated by replacing part of the
brain tissue with a small tumor seed and applying a pressure
normal to the seed’s boundary. In the current approach, the
initial tumor seed is created by approximately warping the
tumor from the patient’s to the atlas space and then applying
multiple erosions. This provides an initial estimate of the tumor
location, but since the initial warping of the patient’s image to
the normal atlas is not very accurate, the exact seed location,

, defined by the center of mass of the
tumor, is part of the tumor model parameters to be estimated.
The amount of shrinkage determines the initial size of the seed,

, and it is also one of the tumor model parameters.
2) Training: Consider the discrete displacement maps

, , at the 3-D Cartesian coordinates
due to the tumor mass effect, simulated

by a biomechanical model with parameters ,
in the atlas image. The displacement maps are

first defined in a coordinate system , centered at each tumor
center, in order to make the domain of all the maps the same
and allow point-to-point comparison and collection of statistics.
Moreover, the domain is restricted inside a region around each
tumor center, where nonzero displacement due to mass effect
is expected.

Fig. 2. Simulation of tumor growth using the biomechanical model (left) and
the corresponding PCA-based model (right), respectively.

Under the assumption of a Gaussian distribution, each
can be represented as

where the mean of the displacement at each voxel location,
the matrix containing the eigenvectors of the covariance ma-

trix that correspond to the largest eigenvalues, and

the corresponding coefficients vector.
3) Interpolating: Provided that the statistical parameters

and have been determined from the training set,1 the displace-
ment map can be calculated for any new tumor parameters

as , if is known. Since it is reason-
able to assume that the coefficients change smoothly for small
variations of , we approximate each coefficient in the coef-
ficients vector by interpolating between
the corresponding coefficients of the training samples in

-space, in order to produce an estimator with continuous values
of the model parameters. For this purpose, two scattered interpo-
lation methods were implemented and compared. The method
with the smallest reconstruction error is chosen, as described
in Appendix I. Finally, the tumor-induced deformation map is
calculated by re-centering the displacements at the original co-
ordinate system, .

Fig. 2 shows an example of an image with simulated tumor
using the biomechanical model and the proposed PCA-based
model, respectively. The two simulation results are very sim-
ilar and thereby indicate that, from the registration perspective,
the substitution of the computationally expensive biomechan-
ical model is justified.

1Details about the model parameters selection for creating sample deforma-
tions for training the local PCA-based model of tumor growth, can be found in
Appendix I.
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B. Deformable Registration Method

The elastic deformation field is calculated according to the
hierarchical approximation of an energy function, which con-
sists of the similarity matching criterion defined in the tem-
plate space, a constraint on the inverse matching, and smooth-
ness constraints on the displacement field, following the general
framework of the HAMMER algorithm [20]. Critical parts of
our formulation of the registration of tumor-bearing images are
1) the definition of the similarity criterion, 2) the deformation
mechanism, and 3) the mechanism for improving the robustness
of the method to slightly inaccurate estimates of the tumor sim-
ulation parameters.

1) Similarity Criterion: The similarity criterion is de-
signed based on the similarity of attribute vectors, which
are defined for each voxel in the image in order to cap-
ture the anatomical context (including healthy and ma-
lignant tissue) around it. Specifically, the attribute vector,

, reflects edge
type ( ), tissue type ( ), and geometric moment invariants

from all tissue types, respectively.
and are scalars taking discrete labels, whereas is a

vector comprising the geometric moment invariants
of each tissue and is used to capture shape information, as
described more analytically in [20]. In this application, only
zero-order regular moments are used. The number of tissue
types depends on the segmentation method applied to labeling
brain tissue. Besides the attributes that capture brain structure
information, the attribute vector captures also the geometric
location relative to the brain tumor. Specifically, is used to
reflect the signed distance from the tumor boundary, and to
reflect the angular location with respect to the tumor center.

The elastic deformation field that spatially warps the template
to the patient’s image is calculated by maximizing a similarity
criterion reflecting the distance of attributes, as will be defined
in the following. Fig. 3 demonstrates how such a similarity crite-
rion can distinguish between different parts of a tumor-bearing
brain image, which might otherwise be indistinguishable.

The similarity of two voxels and is defined as the
weighted summation of a similarity criterion matching the
brain structures, , and a similarity criterion matching the
tumor geometry, , as given below

(1)
where, as shown in the equation at bottom of page, is
a weighting factor which decreases with the distance of and

from each tumor respectively, and are positive constants.
If at least one of the two images is normal (without tumor),

Fig. 3. Demonstration of the distinctiveness of attribute vectors in brain tumor
images. (a) Slice from a 3-D brain image with tumor. (b) Color-coded simi-
larity of attribute vectors. The attribute vector based similarity between the gray
matter voxel indicated by a cross in (a) and every other voxel in the 3-D data
is shown in (b), with white reflecting high similarity (>0.95). The similarity is
calculated from equation (1) without using edge type information (attribute a ),
for simplicity of figure (b). The crosses correspond to the same location in both
images.

becomes zero and the similarity criterion matches only the
brain structures, similar to HAMMER [20]. The use of spa-
tially adapted weights ensures that the identification of corre-
sponding points is driven mainly by one of the two matching
criteria, whereas the spatially smooth decrease of makes the
total similarity smooth. Regarding the intrinsic difference
between the similarity criteria, we should note that the function
values of both and are normalized in the range [0,
1]. Moreover, the constants and determine the sensitivity
(gradient) of .

Notice that the incorporation of the similarity based on the
tumor location into the proposed similarity criterion
serves the purpose of enforcing the warping of the tumor
volumes, in order to facilitate the method for estimating the
optimal parameters for the tumor growth model. As will be
explained in the corresponding paragraph, the hypothesis is
that the optimal tumor parameters minimize the discrepancy
between the coregistered atlas and the patient’s images. Since
the deformation pattern is most informative around the tumor,
the similarity criterion is designed to put special emphasis on
the registration of the tumor neighborhood.

2) Image Deformation Mechanism: The registration process
starts by registering points with salient features (driving voxels),
in order to reduce ambiguity in finding correspondence. The
voxels that drive the deformation are selected hierarchically
according to the distinctiveness of their attributes, i.e., points
on the roots of sulci, crowns of gyri, and strong isolated edges.
As the registration process proceeds, additional driving voxels
are selected to increase local accuracy. Especially for the
tumor area, the selection of driving voxels is not only based
on the saliency of features, but also depends on the necessity
of warping of the tumor volumes. When registration is used as
part of the estimation process of the tumor model parameters,
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driving voxels are selected on the tumor boundaries in order to
facilitate the warping of the tumor volumes. Upon parameters
estimation and tumor growth simulation, the registration is
performed by relaxing all forces that prioritize the matching of
the tumor boundaries. The reason is that the final registration
should not be affected by 1) not accurately determined tumor
boundaries and 2) the residual variability in the tumor vicinity
which is primarily due to fundamental differences in the growth
process between a real and a simulated tumor.

The optimal correspondence of each driving voxel is deter-
mined by integrating the similarity of all voxels within a small
spherical neighborhood around this driving voxel. If the sim-
ilarity is high, then the respective driving voxel is displaced.
This displacement is also interpolated in the neighborhood via
a Gaussian kernel function. Upon interpolation of the displace-
ment everywhere, a Laplacian-based smoothing is applied to en-
sure locally smooth displacement fields. The smoothing reduces
with time, as the level of confidence in estimating the tumor
model parameters increases.

3) Robustness: Robustness is achieved by requiring all the
driving voxels (close and far from tumor) to deform together and
nearly to a global affine transformation in each iterative regis-
tration step. Since the pattern of deformation around the tumor
might deviate significantly from the pattern of deformation in
the rest of the brain, e.g., some inaccurate estimate of the tumor
location would result in a large translational component, all the
driving voxels in the tumor neighborhood are required to de-
form at the same affine transformation as the driving voxels in
the rest of the brain. The opposite requirement is not placed, and
therefore the deformation in the healthy part of the brain does
not depend on the selected tumor simulation parameters. This
registration procedure is robust in registering the healthy part of
the brain, even if the tumor simulation parameters are slightly
inaccurately estimated.

C. Optimality Criterion for

The optimal set of tumor growth parameters, , is not known
for a particular patient; it must be estimated from the patient’s
image. The pattern of deformation around the tumor can be
indicative of the accuracy in estimating the parameters of the
tumor model, . If the estimation of is wrong and thus the
tumor is incorrectly simulated in the atlas, unrealistic and severe
deformations are expected around the tumor region, when trying
to match the atlas with the patient’s image. Conversely, if tumor
location and mass effect in the atlas are estimated in agreement
with those in the patient, a relatively smooth deformation can
be obtained. Additionally, due to the smoothness constraints ap-
plied during registration, the similarity of the two coregistered
images is expected to be low around the tumor if the estima-
tion of is inaccurate. Accordingly, we use the characteristics
of the deformation field and the anatomical characteristics of
the coregistered atlas and patient’s images around the tumor to
define an optimality criterion, , for estimating

Specifically, is defined as the combination of three normal-
ized measures: 1) the residual volume of overlap of the coregis-

tered atlas and patient’s images , 2) the distance of attribute
vectors , and 3) the Laplacian of the deformation field de-
fined to reflect the smoothness property of the deformation field

, as mathematically given below

(2)

The constants are used to assign different weights on different
measures, whereas is used to assign different weights ac-
cording to the voxel’s location . is selected to decrease
with the distance from the tumor boundary for all three mea-
sures, and to increase on voxels lying on edges particularly for
the image-related measures, i.e., and . The constants
are learned by evaluating the performance of each measure sepa-
rately in the registration of patient images, i.e., how informative
each measure is in estimating . is the volume over which
is calculated, and it is defined in the subject brain within a spe-
cific distance from tumor boundary, where the effects of mis-
registration are expected to be more prominent. The part of the
image that has no tissue label due to low confidence in tissue
segmentation, is excluded from .

III. IMPLEMENTATION DETAILS

The detailed procedure of the proposed registration frame-
work is described next. First, the images are preprocessed as
detailed in Section III-A. Then, the tumor center and initial seed
size are optimized and the images are coregistered following a
multiresolution strategy described in Section III-B. Afterwards
the amount of tumor expansion is estimated, in order to allow
the tumor growth simulation to finish before reaching the size
of the delineated tumor in the patient’s image. This step is intro-
duced to make the registration robust to inaccuracies in tumor
segmentation in the patient’s image and is described in Sec-
tion III-C. Since the deformation field displays almost negligible
changes in the regions far away from the tumor during the it-
erative process of optimizing the tumor model parameters, the
optimization is performed only in a subdomain in order to con-
siderably speed up the implementation, as described with more
details in Appendix I.

A. Preprocessing

The first task is to remove skull from the brain [41] and
segment the atlas and individual MR images into four tissue
types: white matter (WM), gray matter (GM), ventricular cere-
brospinal fluid (CSF), and cortical CSF. For this purpose, the
tumor is first delineated by an expert in the patient’s original
image and then masked out. Herein, we would like to note
that in this paper, we do not attempt to solve the problem of
automated tumor segmentation, which has been actively treated
in the literature. The images are segmented into WM, GM, and
CSF using FAST (FMRIB’s Automated Segmentation Tool)
[42]. After tissue segmentation, different labels are assigned to
ventricular CSF and cortical CSF by using a modified version
of HAMMER.

Subsequently, the patient’s scan is registered globally with
the normal template without tumor (atlas ) by applying an
affine transformation [43]. For this purpose, the tumor region in
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Fig. 4. Schematic diagram of the multiresolution framework. In every resolu-
tion level, tumor growth is simulated in the normal atlas, producing an atlas with
tumor which is subsequently registered to the subject. The optimization of ��� is
performed only in a region of focus M � 
 using the Downhill Simplex
method with initial estimate obtained from the values calculated in the previous
level. The procedure is initialized with � , an average of the tumor parame-
ters used for training (see Appendix I for selection of training parameters), and
��� , the identity map for registration. Upon optimization of ���, the tumor growth
model is estimated and the final registration is performed in 
 .

the patient’s segmented image is first marked as GM, in order
to achieve better affine registration. After global alignment, the
tumor region in the patient’s segmented image is assigned a sep-
arate label, in order to provide appropriate information for the
next step of elastic registration. If the uncertainty of segmen-
tation is high due to confounding effects of edema and tumor
infiltration, an additional label can be assigned for these regions
that cannot be classified into any of the previous categories.

B. Workflow in a Multiresolution Strategy

The registration procedure that maps the normal atlas to the
globally-aligned patient’s image, is performed in a coarse to fine
resolution scheme in order to speed up the algorithm, reduce
susceptibility to local minima in both registration and estima-
tion, and achieve robustness. A detailed diagram is schemat-
ically shown in Fig. 4. In particular, each resolution level in-
volves two steps. In the first step, the elastic deformation map
is calculated from the patient’s scan to the normal template
(atlas) , , by applying the previously described
registration method.

Since the atlas does not include a tumor, the deformation is
likely to be inaccurate in the regions close to the tumor. There-

fore, in the second step, the deformation map is refined by it-
eratively simulating the tumor growth in the normal atlas with
different tumor model parameters and registering the tumor-
bearing atlas with the patient’s image , until a minimum error
(as quantified by the optimality criterion ) is reached. In other
words, this optimization step aims to estimate the tumor model
parameters that reduce the discrepancies between the coregis-
tered images as much as possible. The optimization is performed
with the Downhill Simplex method. Since the deformation field

remains unchanged in the regions far away from the tumor
when parameters are changed slightly, the refinement of is
performed only in a region of focus in order to con-
siderably reduce the computational cost. A modified deforma-
tion strategy is performed in order to avoid discontinuities of
the deformation field on the boundary, (see Appendix II
for details). In every resolution level, the estimated tumor model
parameters are used as an initial estimate for the next high-reso-
lution level, and the optimized deformation field that coregisters
the tumor-bearing atlas and the patient’s scan is upsampled and
linearly interpolated to the next high resolution.

C. Estimation of the Tumor Growth Factor

After estimating in the fine resolution level, the final step is
to estimate the tumor growth factor, defined as the ratio of the
tumor volume in the patient’s image to the volume of the initial
seed. During the previous steps of the optimization process, the
final tumor volume has been assumed equal to the segmented
tumor volume in the patient’s image. This is a good approxima-
tion, but the actual value might slightly deviate due to segmen-
tation inaccuracies. Specifically, since part of the tissue inside
the segmented tumor region might be tumor infiltration, which
is assumed to cause negligible mass effect, the tumor mass ef-
fect simulation should terminate before the volume reaches the
size in the segmented image. The estimation of the tumor growth
factor is performed by simulating tumor growth using the
estimated parameters, , for various stages of tumor expansion.
The minimization of from (2) (after registration) gives the op-
timum amount of expansion

In this registration stage, we are setting the weights for the
features related to the tumor geometry to zero, in (1),
and let the deformation be guided only from the surrounding
brain structures. We are also using the biomechanical model in-
stead of the PCA-based model for simulating the mass effect.
The reasons for using the biomechanical model are that 1) the
number of simulations to be performed is small, 2) it provides
the original solution whereas the PCA model is based on ap-
proximation, 3) the PCA model is trained in a lower resolution
causing a reduction in accuracy due to the required upsampling,
and 4) it allows tracking of all instances during tumor growth,
whereas the local PCA-based model is trained only for final tu-
mors exhibiting the same size as in the patient’s image.

IV. RESULTS

The registration accuracy is assessed by both synthetic and
real brain tumor images. In particular, the synthetic brain tumor
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Fig. 5. Sensitivity ofEEE as a function of ��� (tumor seed location on the left, with
the different lines corresponding to each of the 3-D Cartesian coordinates, and
initial seed size on the right). EEE is optimal for the correct value of ���, which
indicates that it is a good measure for estimating ���.

images are produced by first simulating anatomical variability
by the method in [45], thereby creating synthetic brains from a
template brain with exactly known displacement fields. Then,
tumor growth is simulated in the synthetic brains, and the final
images are treated as individual brain tumor images. Since the
same mass effect model [30], [31] is utilized for tumor simu-
lation, as used for the training of our PCA model, this set of
synthesized images provides primarily a means of assessing the
accuracy of our method. We assessed the sensitivity of both the
proposed optimality criterion and the registration method as a
function of the applied , as described, respectively, in Sections
IV-A and IV-B. The total registration error, by using this syn-
thetic data, is also reported. It is expected that, for the brain
images with large tumors, the use of our proposed framework
should outperform normal brain registration algorithms. Thus,
here we select the synthetic cases with small tumor, to show that
even for such cases, the registration can benefit from the simu-
lation of tumor growth in the atlas. In particular, the final tumor
volume in the synthetic images is 8.1 cc, with an initial radius
of seed 5 mm.

Moreover, ORBIT is applied to register real brain images,
with results presented in Section IV-C. All real images are reg-
istered with a normal brain image serving as a template, with
image size voxels and voxel size .
It should be noted that the same set of parameters is used for
all the results shown in this paper, and two levels of resolution
are used in the multiresolution framework, corresponding to the
original image resolution (high resolution) and a subsampled
version by a factor of two (midresolution).

A. Sensitivity of the Optimality Criterion

In order to test the potential of optimizing the tumor growth
parameters using the proposed optimality criterion, we have
plotted as a function of the error in estimating , using one
of the synthetic images. The proposed criterion has a global
minimum at the correct tumor center, and it is also minimized
around the correct size of the initial tumor seed. Therefore, this
experiment demonstrates that the optimality criterion can be
used for estimating the parameters of the tumor growth model.

seems to vary across (Fig. 5, right) less smoothly than
across (Fig. 5, left). This ambiguity is likely due to the very
small increment of tumor size (1 mm), used for evaluating .

Fig. 6. Sensitivity of ORBIT with respect to the estimation of tumor parame-
ters ���. Both rms and max registration errors in the tumor neighborhood 
 are
shown in millimeters. In particular, the max registration error without use of the
biomechanical model is 14.6 mm.

B. Sensitivity of Registration as a Function of the Applied

The purpose here is to investigate the robustness of the pro-
posed registration algorithm to the estimated tumor parameters

. The root-mean square (rms) and the maximum (max) registra-
tion errors of the estimated deformations from synthetic images
to the atlas are calculated separately over the tumor neighbor-
hood and the rest of the brain as detailed next.

1) In the tumor neighborhood , the rms registration error
without the application of the tumor growth model is
2.5 mm, and the max registration error is 14.6 mm, for
the same synthetic brain image as in Section IV-A. If the
tumor growth model is applied, the registration accuracy
varies with the model parameters used, as shown in Fig. 6.
If the error of estimating tumor center is less than 7 mm,
the rms registration error decreases to a value of 1.4 mm
with the application of the tumor growth model prior to
registration. The rms registration error is less sensitive to
the initial tumor radius. On the other hand, the max regis-
tration error decreases significantly from 14.6 to 4.4 mm,
when the tumor growth model is applied in the atlas. As
a conclusion, if the tumor-mass effect model is applied
prior to registration, the max registration error decreases
significantly, and so does the rms registration error in the
tumor vicinity for a range of the model parameters around
the true values.

2) In the rest of the brain , the deformation field is almost
the same, whether the tumor mass effect model is used or
not ( mm, mm, for the same syn-
thetic brain image as above). Also, if the tumor mass effect
model is used, the registration far from the tumor is not
sensitive to the tumor parameters applied, as indicated by
averaging the registration error map over the nine different
synthetic brain images. The registration error maps, calcu-
lated by using optimal and suboptimal tumor parameters
(tumor center misplaced by 5 mm), showed that the regis-
tration accuracy is affected only in the regions very close to
the tumor seed. This observation prompted our decision to
optimize the deformation only in a region around the tumor
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during the process of estimating the tumor model pa-
rameters (as described in Section III-B).

Finally, after assessing the sensitivity of the two basic steps in
ORBIT ( -estimation and registration), we applied those steps
to the same nine synthetic images in order to assess the finally
achieved registration accuracy. The average rms registration
error is 1.9 0.2 mm for the tumor vicinity, and 0.8 mm for the
rest of the brain. These results show that the rms registration
error of ORBIT on synthetic images is at subvoxel accuracy
for the healthy brain part and at the order of the diagonal voxel
distance for the region close to the tumor.

C. Registration Assessment of ORBIT on Real Brain Tumor
Patient Scans

Ten T1-weighted tumor-bearing brain images were selected
for registration with the normal template which include tumors
of different types, grades, and sizes. For comparison, these ten
images were registered using ORBIT, the Image Registration
Toolkit (ITK) [18], [46], [47], and HAMMER, respectively. The
global alignment of each tumor-bearing brain image with the
normal atlas is completed by using affine transformation with
twelve degrees of freedom.

The ITK-based nonrigid image registration was executed
with the following options: three resolution levels, 64 bins,
20 iterations, and four steps of length 5. The similarity mea-
sure was the normalized mutual information. The parameter

, used to control the smoothness of deformation, was
chosen such that the deformation field seemed to preserve
topology (i.e., ).

For the other two methods, i.e., ORBIT and HAMMER,
these ten brain images were preprocessed, as described in
Section III-A. The tumor region is used in HAMMER as a
mask to avoid the mismatch in the tumor vicinity due to the
missing tumor in the normal template. It is worth noting that the
use of such a mask has increased significantly the registration
accuracy of HAMMER in the tumor vicinity, as compared to
previous results [40], where the automatic segmentation of
the brain (including the tumor) into normal tissue classes was
directly used. The purpose here is to see if ORBIT can further
increase the registration accuracy. Notice that the selection of
the best possible options in ITK-based registration and the use
of a tumor mask in HAMMER are expected to provide the best
possible results for these two methods, thus removing potential
biases in favor of our current method.

The execution time for the images was 17 h
for ITK-based registration in a PC with Intel Pentium 4 and CPU
1.7 GHz. HAMMER algorithm took 1.5 h in a Linux cluster
with Dual Intel Xeon 2.80 GHz, running on a single CPU. The
overall computational cost for the ORBIT pipeline on the same
Linux cluster on a single CPU was 14 h, with most compu-
tations used for estimation of the tumor model parameters. We
would like to acknowledge here that this algorithm, in its cur-
rent state, is not intended for real-time usage, but rather as an of-
fline preplanning tool. The performance of these three methods
is evaluated quantitatively and visually as detailed next.

1) Quantitative Assessment Based on Landmarks: In order to
quantitatively assess the registration accuracy, landmark points

were manually placed in the patient’s images by a neuroradiol-
ogist with expertise on brain tumors, in anatomical regions dis-
placed by the tumor and also in anatomical regions that were not
displaced by the tumor. Similarly, the corresponding landmarks
are manually identified in the atlas. This set of landmarks shall
be referred to as the first set of landmarks. In order to ensure the
consistency in the identification of landmarks, the reverse pro-
cedure was followed a few weeks later. The same expert first
looked at the selected landmarks locations in the atlas, and then
identified the corresponding points in the patient’s images. This
set of landmarks is labeled as the second set of landmarks. The
minimum min , mean, maximum max , and standard devia-
tion stdev of the landmarks distance (between mapped and
actual landmarks in the atlas) for the regions displaced by the
tumor are shown in Table I. For each patient’s image, the first
row in the table indicates the intrarater variability in placing the
landmarks; the other three rows show the statistics of landmarks
error for each of the first and second set of landmarks, shown at
each cell, left and right, respectively. The landmark-based re-
sults show that on average ORBIT has higher registration accu-
racy than ITK and HAMMER in the tumor vicinity, especially
in the case of large tumors. For patient 5, the mean error de-
creases 40%. The only cases where the mean error is slightly
larger are patient 3 and patient 6. Regarding patient 3, it should
be noted that the tumor exhibits a very small size, and the use
of a tumor mass effect model is not expected to improve regis-
tration. Regarding patient 6, we would like to note that, despite
the reported landmarks errors, the registration using ORBIT, as
visually assessed later in Fig. 7, seems better than with the other
two methods. Moreover, in order to determine the significance
of the assessment based on landmark errors, we performed an
independent -test between each two methods, ORBIT and ITK
or ORBIT and HAMMER under the null hypothesis that there is
“no difference” between the landmark errors of the two methods

where is the number of landmarks and the indices 1 and 2
correspond to the first and second method, respectively. With
a significance level , the null hypothesis could be re-
jected only for patient 5. This indicates that the landmarks er-
rors are not statistically different for most patients, including the
ones ORBIT performs slightly worse, but they are statistically
different for the case ORBIT performs better than the other two
methods (patient 5).

Additionally, we assessed the registration accuracy with a
rater-independent measure, such as the surface distance of the
ventricles between the coregistered images. We cal-
culated as the mean Euclidean distance of the ventric-
ular boundaries in both directions, from the patient’s image to
the warped atlas image and reversely. Table II shows
calculated only in the tumor vicinity, in order to emphasize dif-
ferences between the three methods. It can be seen that ORBIT,
in comparison to HAMMER, exhibits the smallest distance for
all patients and also it performs better than ITK for all patients
except patient 7, for whom ITK shows a marginally smaller
error. It should be noted that the tumor in patient 7 is far from
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TABLE I
STATISTICS OF LANDMARKS ERROR (IN MILLIMETERS) USING ORBIT,

HAMMER, AND ITK-BASED REGISTRATION, RESPECTIVELY,
IN AREAS DISPLACED BY TUMOR

the ventricles and there is no actual deformation of the ventri-
cles due to tumor mass effect.

In the following, we evaluated the registration accuracy
in areas not displaced by tumor by calculating the error of
the remaining landmarks. The landmarks error statistics of
ORBIT, HAMMER, and ITK-based registration, showed that
the three registration methods are comparable (a -test between

ORBIT-ITK and ORBIT-HAMMER showed -values larger
than 0.4 for all patients). The errors, averaged across the two sets
of landmarks and across all patients for ORBIT ( ,

, , ), for ITK
( , , , ),
and for HAMMER ( , ,

, ), respectively, showed that
ORBIT exhibits the smallest average maximum error and the
smallest average standard deviation.

2) Visual Assessment: Besides providing the quantitative er-
rors by landmarks, the registration accuracy of ORBIT can be
also visually assessed. Fig. 7 illustrates the registration result
of those ten patients’ images with the normal template (without
tumor) using the three registration methods, respectively. It is
notable that ORBIT outperforms ITK and HAMMER for all
patients’ images. High similarity between the warped tumor-
bearing template with ORBIT and the patient’s image can be
observed for all cases, except for patient 10. Patient 10 has a
tumor consisting of a solid and a cystic portion, both together ex-
hibiting a size of 200 cc. The deformation caused on the ven-
tricles is disanalogously larger than on the rest of the structures,
and also it resembles more to rigid motion. It is possible that
the current tumor mass effect model is not adequate for cystic
tumors and that the presence of a cyst requires the application
of a more accurate biophysical model compensating also for the
incompressibility effects of the cystic fluids.

Moreover, the effect of the tumor segmentation refinement
step in the ORBIT algorithm, is visible in many of the warped
images with ORBIT. These warped images have tumors ex-
hibiting smaller size than the tumors in the patient’s image. They
indicate that the part of the tumor causing brain tissue displace-
ment during tumor growth is smaller than the one manually seg-
mented. Also, the presence of tumorous tissue outside this bulk
region indicates the existence of tumor that infiltrates the brain
without displacing structures.

Finally, an example of inverse mapping is shown in Fig. 8
for patient 7. In this case, the tumor consists of an enhancing
and a nonenhancing region, as illustrated by the T1-weighted
image with gadolinium. The nonenhancing region indicates the
presence of edema or tumor infiltration. The patient image is
warped to the normal atlas space by reversing the deformation
field produced by ORBIT, , through the concatenation of
the two components. This warping causes relaxation of the mass
effect and correction of the intersubject differences facilitating
the detection of the two tumorous regions: 1) the initial seed
(as estimated by ORBIT) showing the tissue that is replaced by
tumor, and 2) the surrounding region that is infiltrated by tumor
or edema.

V. DISCUSSION AND FUTURE WORK

A framework for deformable registration of brain tumor
images (ORBIT) has been presented, which incorporates an
elastic feature-based registration method, along with a tumor
mass-effect model. Moreover, an optimality criterion has been
proposed for optimization of the parameters pertinent to the
tumor of a specific patient, such as tumor location in the
atlas space, amount of tissue death, and amount of expansion
(growth factor). After optimization is achieved, the proposed
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Fig. 7. Registration of a normal atlas image to ten patients’ images using ORBIT, ITK, and HAMMER. First row illustrates the normal atlas. Every other row
shows from left to right: the patient ID, a section of the skull stripped T1-weighted patient’s image (axial, sagittal, or coronal), and the corresponding section of
the atlas warped with ORBIT, ITK, and HAMMER correspondingly. For some patients, more than one sections are shown. The tumor segmentation, as manually
performed by the expert, is illustrated on all images with a red line. Arrows point to structures that are displaced correctly only by ORBIT. (a) Patients 1–6.
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Fig. 7. (Continued.) Registration of a normal atlas image to ten patients’ images using ORBIT, ITK, and HAMMER. First row illustrates the normal atlas. Every
other row shows from left to right: the patient ID, a section of the skull stripped T1-weighted patient’s image (axial, sagittal, or coronal), and the corresponding
section of the atlas warped with ORBIT, ITK, and HAMMER correspondingly. For some patients, more than one sections are shown. The tumor segmentation, as
manually performed by the expert, is illustrated on all images with a red line. Arrows point to structures that are displaced correctly only by ORBIT. (b) Patients
7–10.

registration method shows good performance for both tumor
and other brain regions, as validated by both simulated and real
tumor cases.

ORBIT has been compared with two other registration
methods, HAMMER and Image Registration Toolkit (ITK),
using the best possible options for these two methods. The
efficacy of the three registration methods is not easy to compare
in brain regions far from the tumor due to the ambiguity in
defining correspondence between different brains. The land-
marks error seems to be quite large for all registration methods
and also indicates that the methods have a similar performance
in brain regions not displaced by the tumor. However, this is
not conclusive since the intrarater variability in placing the
landmarks was also relatively large.

On the other hand, the assessment through quantitative and
visual criteria in the tumor vicinity, which is the main region of
interest for this study, showed that ORBIT outperforms the other
two methods. It is notable that the landmark-based quantitative
evaluation did not show a significant improvement achieved by
ORBIT, relative to the other two methods, except for one pa-
tient. We attribute this largely to the fact that the neuroradi-
ologist tended not to place landmarks extremely close to the
tumor, since it was difficult to reliably define the anatomy in that
region. Therefore, the landmarks tend to reflect performance
not too close to the tumor, i.e., in regions where we expect
all three methods to be relatively comparable. Visual evalua-
tion (e.g., Fig. 7) shows more marked improvement achieved by
ORBIT, which is also in agreement with our expectation, since
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TABLE II
DEFORMABLE REGISTRATION ERROR OF THE VENTRICLES SURFACE (VN-DIST, MEASURED IN MILLIMETERS)

IN THE TUMOR VICINITY, USING ORBIT, HAMMER, AND ITK-BASED REGISTRATION, RESPECTIVELY

ORBIT uses a tumor growth and mass effect model to simu-
late tumor before registration. Moreover, the registration error,
calculated on the ventricular boundary in the tumor vicinity,
shows that ORBIT outperforms the other two methods. It should
be noted that we selected the ventricles for validation, because
they are structures with distinct boundaries providing accurate
segmentation.

A linear PCA model of tumor growth is used in order to
interpolate between precalculated solutions. Besides the reduc-
tion of the computational cost, the replacement of the com-
plex biomechanical model insures that the template with sim-
ulated tumor will be produced for any seed location inside the
brain parenchyma and for any seed size. On the contrary, the
biomechanical model does not converge in some cases, e.g.,
if the tumors are large and very close to the skull or the ven-
tricular boundary, since remeshing of the 3-D finite element
grid does not necessarily guarantee that the large elements dis-
tortions will be eliminated. In these cases, the failure to con-
verge could mislead the optimization procedure of the model
parameters to wrong optimum. Our experiments showed that
the PCA-based approximation did not significantly affect reg-
istration accuracy; hence it was adopted, due to the significant
computational savings in comparison to using a biomechanical
model.

It is worth noting here, that the training step in the pro-
posed framework is not very costly computationally, since it is
performed only in the selected template. On the contrary, the
training in method in [40] is computationally very expensive
because it requires the performance of tumor growth simula-
tions for a large number of subjects, in order to capture the
statistical variation of tumor mass effect for each set of model
parameters. In both methods, the tumor model parameters used
for training are chosen to cover the range expected for the
subject to be registered, i.e., selected locally. Therefore, the
training step has to be repeated for each new tumor-bearing
image to be registered. In the future, the PCA models used
by each method could be trained once for every possible set
of tumor growth parameters, thus eliminating completely the
training step.

One of the contributions of this work is the procedure for esti-
mation of the optimal set of parameters of the tumor growth and
mass effect model. Our results are generally promising, in that
the tumor model parameters can be estimated accurately. How-
ever, more experimentation along this direction is necessary in
future work, especially with respect to sensitivity of this param-
eter estimation process for different growth models. It is notable
(Fig. 5) that tumor position seems to be relatively easier to es-
timate, as opposed to initial tumor seed size. This was indeed
our expectation prior to developing this estimation procedure,

Fig. 8. Registration of patient 7 into the normal atlas space using ORBIT.
The top row shows the T1-weighted patient’s image (a) with and (b) without
gadolinium rigidly registered to the atlas in (d). The image in (b) after de-
formable registration to the normal atlas, which causes relaxation of the mass
effect and correction of the intersubject differences, is shown in (c). The initial
tumor seed, shown with gray color in (c), represents tissue death and indicates
the location of initial tumor appearance, as defined in the atlas. The surrounding
peri-tumor edema or infiltration, as mapped in the normal atlas, is also visible.

since wrong tumor location estimates will generate atlases that
are very different from the patient’s images close to the tumor,
whereas small variations in tumor seed size cause much more
subtle differences.

One of the motivations of the current work is the coregistra-
tion of patient images in a common atlas space, as illustrated in
the example shown in Fig. 8. This inverse registration procedure
causes relaxation of the tumor growth mass effect and removal
of the intersubject differences. Such mappings can facilitate the
correlation of treatment parameters with therapy outcome. For
example, the correlation of tumor recurrence with radiation dose
profiles (inevitably defined in the common atlas space) can be
studied for patients with tumors emerging from similar anatom-
ical locations. Also, tumor model parameters, e.g., size of ini-
tial seed indicating tissue death or amount of infiltration, can
be quantified and compared across patients, since they are mea-
sured in a common space.

Since a great deal of effort has been devoted by the computa-
tional biology community to the development of mathematical
and simulation tools that help predict how cancer evolves, in the
future we plan to efficiently exploit this knowledge to improve
the component related to tumor modeling. As an example, more
advanced biophysical models of tumor infiltration and edema
spread [35], [48], [49] could be integrated to the applied biome-
chanical model of tumor mass effect to provide better initializa-
tions for the registration component. It also should be noted, that
the biomechanical model in [30] and [31] can also simulate the
swelling caused by possible peri-tumor edema. Currently, we do
not simulate edema swelling, first because the expansion caused
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by edema, if present, is not large and can therefore be captured
by the deformable registration method, and second, in order to
reduce the computational cost by limiting the number of mod-
eling parameters. Moreover, edema can have very diverse size
and shape causing the parameterization to be very difficult.

A current limitation of our approach is that it is based on
the prior tissue segmentation, which poses considerable diffi-
culties in practice, especially in the region around the tumor that
often displays edema and infiltration. The proposed framework
is mostly suitable for tumors with distinct tumor boundaries,
which are not very challenging from segmentation perspective.
However, it is important to note that the current implementa-
tion is robust to inaccuracies in tumor segmentation because
the simulated tumor is not forced to expand until it reaches the
manually segmented tumor in the patient’s image. The amount
of tumor expansion is rather determined by optimizing the de-
fined optimality criterion. One future extension of the proposed
registration method could be the transition from hard tissue seg-
mentation into a fuzzy or probabilistic segmentation framework,
which is more appropriate for the inherently diffuse and infil-
trative brain tumors, since in those cases the tumorous area can
only be characterized through probabilistic tissue abnormality
maps. On-going work in our laboratory investigates pattern clas-
sification methods that use multiacquisition imaging profiles,
including T1, T1-GAD-enhanced, FLAIR, DTI, and aims to
achieve a more accurate tissue classification, thereby assisting
in the registration process.

APPENDIX I
IMPLEMENTATION DETAILS ON THE PCA-BASED MODEL

OF TUMOR MASS EFFECT

In the following, we present some implementation details of
the PCA model of tumor growth, which provides the tumor-in-
duced deformation field for generating the tumor-bearing atlas
image through the placement of initial seed in the atlas. The cri-
terion of selecting sample deformations for training the PCA
model of tumor growth and the technique for interpolating be-
tween the coefficients vectors are both explained next.

1) Selection of Training Samples: Tumor mass effect sim-
ulations are conducted in the atlas space for building a set of
training samples with tumor parameters, ,

. Tumor center in the atlas space can be roughly esti-
mated as the center of mass of the tumor of the globally aligned
and approximately warped patient’s image. Thus, the locations
of tumor samples can be selected close to this center, with a sam-
pling rate that is higher in areas close to the cortical or ventric-
ular boundary. Notice that the sampling rate should be spatially
adjusted, since the tumor deformations close to the boundary
show larger variation due to different boundary conditions, com-
pared to the ones developed in uniform regions, with deforma-
tion pattern similar to radial expansion. Moreover, samples that
lie on the different sides of the ventricle are not jointly used,
since their deformation patterns are very different.

As to the size of the initial seed, there is no immediate way of
acquiring an initial estimate. Therefore, two or three values are
chosen for the training, between the lower and upper limits of
the initial seed size. In particular, the upper limit is smaller than

the final tumor in the patient’s image, whereas the lower limit is
larger than the grid discretization of the biomechanical model.

2) Selection of Interpolation Method: The coefficient vector
used to reconstruct the tumor-induced deformation field for
new model parameters can be interpolated from the coefficient
vectors of the training samples. Two scattered interpolation
methods, based on either inverse distance weighting or local fit-
ting, were tested. The inverse distance weighting interpolation
method was finally chosen and given below, since it provided
slightly smaller reconstruction errors

where

is the number of retained principal components and is the
bivariate Gaussian distance function prescribing that the influ-
ence of the sample fades away with the distance from the fit-
ting point . is a kernel used to control the number of neigh-
boring samples contributing for interpolation, and and
corresponding constants

APPENDIX II
OPTIMIZATION IN A SUBDOMAIN

In order to speed up the execution, the optimization of
is performed in a subdomain of the subject space, which is
larger than the tumor neighborhood used to evaluate the op-
timality criterion, . The optimization method Down-
hill Simplex [44] is applied. A modified deformation strategy
is performed in order to avoid discontinuities of the deforma-
tion field on the boundary . First of all, driving voxels
are selected only inside . Since the identification of corre-
sponding voxels is based on maximization of the similarity of
the attributes in a sphere around each driving voxel, in order to
avoid partial volume effects, is expanded to include also
parts of the spherical subvolume that might fall outside the ini-
tial subdomain.

Then, when deforming the subvolume of a template driving
voxel , the deformation is propagated on every neighboring
voxel according to a Gaussian kernel that should leave the
boundary voxels of the kernel unchanged. In order to preserve
the continuity of the displacement field around , the dis-
placement field is scaled according to the distance of to

, in addition to the Gaussian scaling based on the dis-
tance .

After deforming the subvolume, Laplacian smoothness
constraints are applied to refine the displacement field. The
smoothing is applied only in the subdomain , in order to
retain the estimated deformations outside . Additional to
the minimization of the Laplacian cost term which leads to
smooth first derivatives, a constraint on the second derivatives
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is applied inside as well as close to the boundary ,
thus leading to well behaved deformation fields.
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