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ABSTRACT

Tissue abnormality characterization is a generalized segmentation problem which aims at determining a continu-
ous score that can be assigned to the tissue which characterizes the extent of tissue deterioration, with completely
healthy tissue being one end of the spectrum and fully abnormal tissue such as lesions, being on the other end.
Our method is based on the assumptions that there is some tissue that is neither fully healthy or nor completely
abnormal but lies in between the two in terms of abnormality; and that the voxel-wise score of tissue abnormal-
ity lies on a spatially and temporally smooth manifold of abnormality. Unlike in a pure classification problem
which associates an independent label with each voxel without considering correlation with neighbors, or an
absolute clustering problem which does not consider a priori knowledge of tissue type, we assume that diseased
and healthy tissue lie on a manifold that encompasses the healthy tissue and diseased tissue, stretching from
one to the other. We propose a semi-supervised method for determining such as abnormality manifold, using
multi-parametric features incorporated into a support vector machine framework in combination with manifold
regularization. We apply the framework towards the characterization of tissue abnormality to brains of multiple
sclerosis patients.

Keywords: Tissue Abnormality Characterization, Manifold Regularization, Support Vector Machine, Multiple
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1. INTRODUCTION

In order to obtain a more comprehensive characterization of tissue abnormality, combination of information
from several MR protocols, has gained attention recently,1.2 While this has mainly been employed to detect
diseased tissue such as lesions, but it is expected that it may also help in quantifying the deviation of tissue from
healthiness that is, the degree of abnormality.3 Tissue characterization of abnormality helps identify regions that
are being progressively affected by disease and as such can be used for treatment planning and prognosis. In
addition, tissue characterization, if well validated, could also be used in the form of a segmentation tool. However,
abnormality manifests itself differently in different magnetic resonance imaging (MRI) protocols. Hence there is
a need for sophisticated statistical methods that combine information from the different protocols to provide a
comprehensive tissue abnormality profile.

There are very few publications that deal with tissue characterization with the majority concentrating on
segmentation of diseased tissue (lesion/tumor). Welti et. al4 tried to characterize MS lesions by segmenting
them into active lesions by analyzing the spatio-temporal behavior of tissue voxels. But they do not characterize
the degree of abnormality in the white matter outside of the lesions that is also deteriorating as part of the
progression of disease. A course adopted via discriminative methods uses samples of various classes to train
models for each tissue class and provides good discriminative power in terms of class separation. Support
Vector Machines (SVM),5 Bayesian,6 or Neural networks,7 are usually used as the core of such methods. These
methods treat each voxel individually with no spatial constraints with neighboring voxels incorporated. These
discriminative models require a lot of samples from each class in order to give accurate result. Obtaining reliable
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Figure 1. Left: Semi-supervised learning: bag of positive S+ denoting healthy and negative examples S− depicting
diseased samples are available. Grid represents voxels that are not labeled but lie in between healthy and diseased in
terms of abnormality. Right: Distribution of samples that vary on a smooth manifold encompassing the normal cluster
at one end to the abnormal cluster at the other.

ground truth usually requires an expert to go through tedious manual segmentation. Corso et al.8 proposed SWA
(Segmentation by Weighted Aggravation) which is implemented within a Bayesian framework with hierarchical
weight assignment. Song et al.9 suggested semi-automated tissue segmentation using Gaussian Process. In all
these cases, segmentation or in other words, separation of two classes was the main interest, but not a continuous
characterization of abnormality, as we provide in our framework.

In this paper, we consider tissue abnormality characterization as a regression problem. We assume that there
is a smooth manifold encompassing normal and lesion tissue with normal appearing abnormal tissue lying on
this manifold. Furthermore, abnormality score should be continuous and smooth on manifold and spatially on
the image. However, there are some issues to be addressed: first, conventional regression methods like Support
Vector Regression (SVR) does not provide leverage to control the smoothness; second, abnormality in the absence
of consistent ground truth may be easier to be characterized using combination of MR protocols rather than
a single one. We have some samples from healthy brain and some samples from lesion part of diseased brain
as labeled training samples. Voxels of the brain which are to be tested are considered as unlabeled samples.
Taking advantage of Laplacian Regularized Least Square (LapRLS)10 formulation as a semi-supervised regression
method, we associate a continuous abnormality score pertaining to each voxel of the brain implemented as an
embedding graph consisting of labeled and unlabeled voxels. Training samples and unlabeled voxels set up
vertices of an embedding graph. Associations between neighborhood voxels are taken care of using a proper edge
weighting scheme between vertices of embedding graph. Since a smoothness constraint is imposed on the cost
function of regression, the result of such a functional optimization could be treated as a qualifier of tissue which
provides the abnormality characterization. Employing LapRLS, we propose a method which can handle both the
criteria (spatial and manifold smoothness) in one framework, so that a continuous abnormality score is obtained.
The framework is applied to multi-parametric data acquired on MS patients with the idea of characterizing not
only the lesions diseased or healthy tissue, but also the WM that is progressing to abnormality based on the
stage of the disease.

2. FRAMEWORK FOR TISSUE ABNORMALITY CHARACTERIZATION

Our reasons for using manifold regularization method for tissue characterization is two folds: first of all, we want
to address the fact that samples that are close to each other should possess a similar decision function. The
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meaning of closeness is defined based on graph embedding and edge weights which have been defined between
vertices. For example, if two voxels of an unlabeled image are close together spatially, they should be associated
with a similar decision function. As an alternative example, if an individual voxel is similar to one of the labeled
training samples, it should in high probability have the same decision value as the labeled instance (Fig.1:Left).
Secondly, as we are interested in tissue abnormality characterization, assigning discrete numbers (class labels)
is not sufficient because it is not depictive of the gradual transition of tissue from diseased to healthy. In other
words, they are located somewhere between healthy and diseased tissue samples on a manifold (Fig.1:Right). In
addition, the proposed framework is capable of addressing and incorporating the relationship between adjacent
voxels in image (Fig.1). In such a case, a smooth decision function is required. To do so, we have assumed that
healthy and diseased tissue lie on two disjoint clusters however tissue with intermediate degrees of abnormality
fill the gap in between two clusters. However, we do not have any ground truth for this type of intermediate
tissue. Therefore, we adopt a manifold regularization10 framework to address it. To do so, we have assumed
that healthy and diseased tissue lie on two disjoint distributions however tissue with intermediate degrees of
abnormality fill the gap in between two distributions.

2.1 Laplacian Regularized Least Square

Given a set of labeled example (xi, yi), i = 1, ..., l, (in our case, xi’s are voxels with multi-parametric intensities
that have been labeled (yi) as diseased or healthy), our aim is to find a function, namely abnormality function
f , which satisfies following condition:

f∗ = arg min
f∈HK

1
l

l∑
i=1

C(xi, yi, f) + λR‖f‖2
K + λM‖f‖2

M (1)

The first term, C(xi, yi, f), penalizes error for labeled samples, yi, which in the case of regression, it could be
square loss function C(xi, yi, f) = (yi − f(xi))2. The second term, λR‖f‖2

K , and third term, λM‖f‖2
M , together

impose different smoothness conditions on the abnormality function. First one imposes smoothness such that
normal and lesion samples would not be mixed together. The latter one takes care of spatial smoothness
and smoothness of abnormality score between labeled and unlabeled samples. f∗ is abnormality score derived
from minimization of eq.1 in which f∗ > 0 is considered abnormal and f∗ < 0 is considered normal. With
some reasonable mathematical assumptions described in,10 the last term ‖f‖2

M ,can be approximated by graph
Laplacian which is constructed based on labeled and unlabeled samples. As it is shown in,10 the optimized
function will be:

f∗ = arg min
f∈HK

1
l

l∑
i=1

C(xi, yi, f) + λR‖f‖2
K +

λM
(u + l)2

f̂T Lf̂ (2)

where f̂ is a vector containing outcome (class label) for labeled and unlabeled samples. Since we do not have
outcome for unlabeled samples, corresponding elements in f̂ will be zeros. Matrix L = D − W is a graph
Laplacian matrix and W matrix contains edge weights of embedding graph and D is a diagonal matrix diagonal
elements of which are sum of corresponding columns.10 As it is shown in10 the decision function would be in the
form of f(x) =

∑u+l
i=1 αiK(xi, x). In this study, we have used the RBF kernel.

As the square loss function, (yi − f(xi))2, has been used, the resulting optimization problem would be
Laplacian Regularized Least squared (LapRLS) which is a type of regression problem. In that case, optimal
solution for αi could be derived from following linear system:10

α∗ = (JK + λRlI +
λMl

(u + l)2
LK)−1Y (3)

Where Y is a vector containing labels for trainig samples (+1,-1,0 for lesion, healthy and unlabeled samples
respectively). J = diag(y1, y2, ..., yl, 0, 0, ..., 0) is a diagonal matrix holding labels for labeled samples and zero
for unlabeled samples on diagonal elements. I is an identity matrix.

Unlike traditional transductive SVM method like11 in which similarity between labeled and unlabeled samples
cannot be defined arbitrarily, the interesting point of manifold-based methods is that they give us a tool to
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define similarity between samples arbitrarily. In fact, prior knowledge could be incorporated in terms of weights
between samples, such as in You et al.12 and Geng et al.13 Since the main goal of this paper is not classification
(lesion segmentation), but aims at tissue characterization, we should design a weighting scheme which can reveal
underlying abnormality coded by various MR modalities. As it is mentioned earlier, we have asssumed that
abnormal tissue samples are scattered between normal and lesion clusters on the sample manifold. In addition,
voxels which are spatially close should supposedly possess similar abnormality values. Taking into account these
two facts, we propose the weighting scheme which helps us characterize tissue while imposing spatial and features
space smoothness, simultaneously.

In this scheme, namely Additive weighting scheme, edge weights are assigned with the following rules:

L =
[

L11 L12

L21 L+
22

]
(4)

L12 = LT
21

L+
22 : [l+22]ij = η[l22]ij + (1 − η)e(

−(x
p
i
−x

p
j
)2

2σ2 )

in which L11, L12, L21 are ordinary weight, e.g. binary nearest neighbor weights or heat kernel or any other
method, which is solely derived from features, in our case multi-parametric intensity features. L11 in a block
matrix represents the weights between labeled samples and L21 and L21 respectively shows the weights between
labeled-unlabeled and unlabeled-labeled samples respectively, and L22 corresponds to unlabeled-unlabeled sam-
ples weights. xp

i and xp
j are positions vectors of i’th and j’th voxels in space respectively. Equation (4) says

that if there is any relationship, say nearest neighbor, between samples of labeled instances, it should be kept
intact; for unlabeled voxels, Eq.4 combines weights derived from features L22 and their location with each other
with arbitrary ratio η to derive new weights L+

22. In fact, η and σ could be seen as leverages to control spatial
smoothness. Mathematical details about how to derive Eq.3 and more can be found in10 .

Tissue Abnormality Profile: On applying LapRLS to a dataset, the abnormality score produces a voxel-
wise smooth measure of abnormality which is referred to as the Tissue Abnormality Profile. This is color coded
to visualize the level of abnormality. Red indicates high abnormality and blue indicates healthy. These tissue
abnormality maps can be segmented (using a threshold) to obtain maps of diseased tissue, that is, lesions. These
regions are depicted in red in Fig.2:(c),(d). In all color maps, minimum and maximum of abnormality score
values are normalized to zero and one respectively.

3. EXPERIMENTAL DESIGN AND RESULTS

We have applied our framework to a dataset of patients with multiple sclerosis (MS). The aim is to be able to
characterize the abnormality in Normal Appearing Brain Tissue (NABT) in the patients, using samples identified
in the lesions in the patients and the healthy tissue in the controls. Multiparametric intensity feature was designed
at each voxel incorporating the intensities from different MR protocols. In each case several MR protocols were
acquired: namely, FLAIR, T1, T2, Magnetization Transfer (MT), and diffusion tensor imaging(DTI). Fraction
Anisotropy(FA) and Trace maps are calculated from the DTI data, and B0 (image acquired without gradient
direction) are being used. For training samples for healthy tissue, various parts of the brain of the healthy controls
were outlined which should include gray and white matter in addition to CSF. Multiparametric Intensity features
are defined at each voxel, by concatenating the intensity value at that voxel from each protocol into a vector.
To show our method can capture abnormality and due to the fact that there is no ground truth for NABT, we
will study the behavior of abnormality over time (Fig.2:(c),(d)).

Fig.2:(d) shows how normal appearing brain tissue that is progressing to abnormal evolves over time and
converts to purely lesion tissue. The time interval between successive scans are about three months. However,
MS lesions may appear and disappear in less than two months; in other words, it is possible that a part of tissue
that appears purely healthy in the first scan progressively converts to abnormal and eventually to lesion. As
it can be seen in Fig.2:(d), although a very diffuse white area is evident in the peri-ventricular region in the
first time point(T0), with no high intensity lesion, however our decision function visualization is able to pick it
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Figure 2. (d): LapRLS result for peri-ventricular area on first time point: it becomes high intense in FLAIR modality
which is the manifestation of MS lesion. Eventually, it becomes a full-fledged lesion. a: shows how the abnormality score
identifies abnormality in areas which are classified as healthy. It shows that the portion of tissue with high abnormality
value (f) becomes lesion over time rather than those which posses lower abnormality value. Z-axes represents the chance
of tissue to ever converting to lesion until t = Ti. (a),(b): These are the tissue abnormality map. Effect of manifold and
spatial smoothing. Each of the figures on the left show the color-coded voxel-wise outcome of the decision function on
applying manifold and spatial smoothing. The figure on the right, is obtained by threholding the tissue abnormality map
to determine the regions of high abnormality (or lesions). (a)Less weight for manifold smoothing (last term two terms in
Eq.1) terms lead to less smooth decision function and noisier labeling as indicated by the patchy color map; This shows
that both manifold(λM) and spatial smoothing (η) are important for obtaining a smooth tissue characterization (and
hence a smoother tissue abnormality map). The more reddish, the more abnormal tissue would be and the more bluish,
the healthier tissue is.

up as abnormal in the color map. The region progressively becomes higher intensity in the FLAIR modality
which is characteristic of MS lesion and eventually, it becomes a full-fledged lesion(T4). Fig.2:(c) shows that
the more abnormal the tissue is initially, the more likely it is to convert to lesion over time. X-axis in Fig.2:(c)
shows the outcome of the abnormality score(f) on the first time point only for tissues which are classified as
healthy(f < 0); Y-axis shows time point and Z-axis shows the likelihood of ever been lesion. It shows that tissues,
abnormality score of which are closer to the boundary separating the healthy from the boundary (f = 0), are
more likely to eventually become lesion rather those which are further away from boundary. Fig.2:(a),(b) shows
that decreasing the effect of the manifold terms, lower values for λR and λM, (second and third terms in Eq.1),
results in a noisier voxel-wise tissue label and abnormality map. The combined effect of the parameters yields a
smoother result indicating the need for both spatial and manifold smoothness.

4. DISCUSSION

Our framework incorporates manifold regularization to classify voxels with multi-modal features. The outcome of
application to real data is to obtain a gradually varying decision value (that is, a smoother color map visualization)
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based on expert defined labeled voxels. Although many have applied SVM or other classification techniques to
classify each voxel individually and independently, our method takes into account the spatial position of samples
and their arrangement on data manifold simultaneously. Therefore, as is expected, it yields results which are
smoother and consequently smoothness removes some false positives (identifying voxels as lesions or abnormal
when they are not). In addition, we obtain classification even in the presence of very subtle differences in
tissue characterization. Thus our method is able to capture the manifold of disease progression determined
by the healthy tissue at one end and lesion tissue at the other. Through the process of employing manifold
regularization, we are able to capture smooth transistion from the normal, to normal-appearing and finally to
fully diseased tissue. Owing to the smooth transistion and effective classification, the framework is potentially
better for lesion segmentation also, in addition to the characterization of tissue abnormality. The framework is
particularly applicable to high dimensional data which is difficult to regularize in general, and obtain a framework
for tissue abnormality characterization.

5. CONCLUSION AND FUTURE WORK

In this paper we have proposed a framework for characterizing the tissue abnormality by treating abnormality
to lie the healthy and diseased tissue on a manifold. The application of the manifold regularization methods
to the multi-parametric MS datasets, produce a voxel-wise decision map of abnormality that can be used to
investigate tissue that is progressively becoming abnormal. We expect that such a novel characterization of tissue
abnormality will help determine tissue that is deteriorating and help in prognosis and determining treatment,
thereby changing the course of the disease.
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