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Abstract. Brain lesions, especially White Matter Lesions (WMLs), are 
associated with cardiac and vascular disease, but also with normal aging. 
Quantitative analysis of WML in large clinical trials is becoming more and 
more important. In this paper, we present a computer-assisted WML 
segmentation method, based on local features extracted from conventional 
multi-parametric Magnetic Resonance Imaging (MRI) sequences. A framework 
for preprocessing the temporal data by jointly equalizing histograms reduces the 
spatial and temporal variance of data, thereby improving the longitudinal 
stability of such measurements and hence the estimate of lesion progression. A 
Support Vector Machine (SVM) classifier trained on expert-defined WML’s is 
applied for lesion segmentation on each scan using the AdaBoost algorithm. 
Validation on a population of 23 patients from 3 different imaging sites with 
follow-up studies and WMLs of varying sizes, shapes and locations tests the 
robustness and accuracy of the proposed segmentation method, compared to the 
manual segmentation results from an experienced neuroradiologist. The results 
show that our CAD-system achieves consistent lesion segmentation in the 4D 
data facilitating the disease monitoring.  
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1   Introduction 

Population studies have shown that brain lesions, especially WMLs, are associated 
with several diseases, such as arterial fibrillation, arterioscleroses, impaired cognition 
and others [1,2]. The increased interest in brain lesion research may improve 
diagnosis and prognosis possibilities for patients with cardiovascular symptoms. 
Since brain lesion patterns are very heterogeneous, ranging from punctuate lesions in 
the deep white matter to large confluent periventricular lesions, the scoring of such 
lesions is complicated. For longitudinal studies aiming to capture relatively small 
changes in brain lesion patterns, accurate information of lesion volume and location is 
essential. It is known that expert-based delineation of brain lesions is difficult to 
reproduce across raters, or even within the same rater, and that combination of 
readings from independent reader may be necessary in a longitudinal study. 

The use of an automated segmentation method that detects brain lesions with a 



high sensitivity and specificity could be advantageous. Most of the methods in the 
literature have been developed for the detection of Multiple Sclerosis (MS) lesions by 
combining multi-parametric MR images, i.e. images obtained via different MR 
protocols. The advantage of integrating information from multiple sequences is that it 
can reduce the uncertainty and increase the accuracy of the segmentation. They 
usually apply supervised voxel-wise classification in which the desired segmentation 
is known (expert manual delineation) and used as a training set to build the 
segmentation model [3,4,5,6]. However, relatively less attention has been given to 
brain lesion segmentation in elderly individuals, and AD or diabetic patients. Since 
MS lesions present different characteristics from lesions in elderly and/or diabetic 
individuals, those methods are not directly applicable to our studies, albeit they have 
formed the foundation for our development. Because of the decreased contrast 
between white matter (WM) and gray matter (GM) in MRI in elderly, techniques that 
require the segmentation of WM and GM for the extraction of the WMLs perform 
moderately well when applied to geriatric patients, especially when they were 
originally designed and trained to extract lesions in MS patients. Mohamed et al. [7] 
presented a method for differentiating WMLs using a supervised classification 
method with relatively good sensitivity but somewhat limited specificity to lesions.  

Moreover, only a few methods have combined space and time into the lesion 
characterization process [8,9]. These approaches focused primarily on quantifying the 
temporal variations of MS lesions, important in differentiating active from chronic 
lesions. In contrast to the complicated MRI dynamics of lesions in MS, the 
monitoring of WMLs does not require spatiotemporal modeling, since the effects in 
WMLs are irreversible.  

In this paper, we present a computer-assisted WML segmentation approach that 
has been designed to process longitudinal MR scans of elderly diabetes patients [10]. 
Our method uses a combination of image analysis and pattern classification using 
SVM. Image intensities from multiple MR acquisition protocols, after co-registration, 
are used to form a voxel-wise feature vector that helps to discriminate lesion from 
various normal tissue image profiles during segmentation. In general, there are three 
steps in our approach. First, we jointly preprocess baseline and follow-up data. The 
preprocessing step includes co-registration of different MR modalities of the same 
patient, skull-stripping, intensity normalization, as well as inhomogeneity correction. 
Second, a set of training samples is manually delineated by an expert reader on the 
baseline images, and then used to build a classification model via SVM [11] and the 
AdaBoost algorithm [12]; this step is applied only once, during training. Third, the 
SVM model is used to perform the voxel-wise segmentation of the longitudinal data. 
The methodology is validated against the expert human readings. In the current study 
we present results obtained using training samples defined by a single expert. 
However, we have also performed experiments using samples defined by two 
different experts, which have shown that the lesion load detected by the proposed 
method showed high correlation across experts. 



2   Methods 

MRI’s used herein were obtained from individuals with diabetes, with an inter-scan 
period of approximately 3 years. All 42 participants’ exams consisted of transaxial 
T1-w, T2-w, PD and FLAIR scans with 23 of the participants having currently a 
follow-up study. All scans except T1-w were performed with a 3 mm slice thickness, 
no slice gap, a 240 × 240 mm FOV and a 256 × 256 scan matrix. T1-w scans were 
performed with a 1.5mm slice thickness, same slice gap, FOV and scan matrix. The 
data are preprocessed and features are extracted in order to train an SVM classifier, as 
explained next. 

2.1   Data preprocessing and feature extraction 

Preprocessing: The multiple images acquired from the same individual are co-
registered, in order to compensate for possible motion between scans. Using as 
similarity metric the correlation ratio and normalized mutual information, affine 
registration [13] implemented in FSL [14] is employed for co-registration of multi-
modality images. The FLAIR image of each subject is used as reference space, to 
which all other sequences are transformed. Then each sequence of the follow-up data 
is co-registered with the corresponding aligned baseline sequence. The intra-modal 
registration can generally achieve better accuracy. After co-registration, a deformable 
model based skull-stripping algorithm called BET [15], implemented in FSL [14], is 
used to generate an initial brain tissue mask from the co-registered T1-w image, and 
then this brain tissue mask is used to extract the brain region from all other modality 
images. Finally, for each image volume, inhomogeneities are corrected by N3 [16]. 

A fundamentally important step in our segmentation algorithm, as well as in most 
supervised classification methods, is the standardization of the image histograms. To 
this end, a linear transformation (translation and scaling) is calculated, that minimizes 
the L2-norm of the histogram difference between transformed image and template 
image, and reverse. The histograms are first smoothed and the bin representing the 
background is excluded from the least-squares error minimization. In order to achieve 
high temporal stability in the histogram normalization, we constrain the baseline and 
the follow-up histograms to be normalized to the template used in the study in exactly 
the same way. Follow-up histograms are normalized to their respective - standardized 
to the template - baselines, a problem that is relatively easy to solve, since baseline 
and follow-up images belong to the same individual. Thus, histograms between 
images of the same subject get aligned consistently, and the temporal variance is 
reduced. We will refer to this approach of histogram equalization using (intra-subject) 
4D data as TVR (temporal variance reduction), as opposed to the standard 3D 
approach aligning baseline and follow-up images independently to the template 
histogram. This second approach aims at reducing the inter-subject variance, and will 
be refer to as IVR. Since the inter-subject variability (between subject and template) is 
much larger than the intra-subject temporal variability, a global histogram matching 
based on IVR fails, and tends to produce inconsistent 4D WML segmentation. We will 
show the proposed TVR approach is more appropriate for measuring temporal WML 



change.  
Feature extraction: In general, the amount of intensity overlap between WMLs and 

normal tissue varies greatly across different modalities. In T1-w images, WMLs have 
intensities similar to GM, and in T2-w and PD images, WMLs look very similar to 
CSF. Although the FLAIR image has the least intensity overlap between WMLs and 
normal tissues, it has been suggested in the literature that FLAIR is less sensitive in 
the posterior fossa [17], may lead to “overestimation” of lesion load, and has a higher 
inter-vendor variability [18]. Furthermore, FLAIR may present hyperintensity 
artifacts [19] that might lead to false positives, thereby rendering it difficult to use 
only the FLAIR images to segment WMLs. Therefore, it is important to integrate 
information from different modalities, in order to minimize the ambiguity in 
identifying WMLs from using only a single modality image. A feature vector is 
computed for each non-background voxel in a 3D reference space for each subject. In 
order to make the features robust to noise, each sequence is smoothed by a Gaussian 
filter with a very small kernel (0.5mm). 

2.2 Lesion segmentation (training and testing) 

SVM has been shown to be a powerful technique for learning from data and in 
particular, for solving binary classification problems [11]. In a binary classification 
task like the one in our study (normal tissue/lesion tissue), the aim is to find an 
optimal separating hyperplane between the two data sets. In our application we use 
linear SVM. 

Training SVM via AdaBoost: A nonlinear pattern classifier is constructed from the 
entire training set, i.e. by using all lesion voxels of all training scans as examples of 
imaging profiles to be recognized in new scans, along with a large number of normal 
tissue voxels. Because the number of normal tissue voxels is far higher than the 
number of lesion voxels, it is essential to select only a representative set of normal 
tissue voxels comparable to the number of lesion voxels. This selection is not random, 
but it is rather guided by the classification results themselves, using the AdaBoost 
algorithm [12]. This approach is based on a sequence of classifiers that rely 
increasingly on misclassified voxels, since those are presumably the voxels on which 
the classifier must focus. During this adaptive boosting procedure, each sample 
receives a weight that determines its probability of being selected in a training set for 
the next iteration. If a training sample is accurately classified, then its likelihood of 
being used again in subsequent iterations is reduced; conversely, if a training sample 
is inaccurately classified, then its likelihood of being used again is increased. 

Segmentation (testing): In the testing stage, T1-w, T2-w and PD images of a new 
(not in the training set) subject are firstly preprocessed (co-registered etc.) by the 
procedure described before, and then the pseudo-likelihood of each voxel being WML 
is measured by the generated SVM classifier. The output of SVM is a scalar measure 
of abnormality (as shown in Fig.1), which is further binarized by an optimal threshold 
to produce the WML segmentation.  

Subsequently, two post-processing steps are applied in order to remove remaining 
false positives.  Extra-axial  hyperintense regions, like fat in the orbits, can not always 



 

Fig. 1. Integration of multi-parametric MRI for creation of voxel-wise abnormality maps based 
on SVM classifier. From left to right and top to bottom T1-w, T2-w, PD, FLAIR image and 
generated abnormality map (shown in color scale). The color scale is only relative, i.e. 
appropriate (non-linear) scaling is required, such as fitting a sigmoid function using Platt’s 
method [20], to represent actual (pseudo)probabilities. 

be completely removed by the skull-stripping algorithm used in preprocessing stage. 
Imaging profiles belonging to these regions are more similar to WMLs than that of 
normal tissue and therefore they are eliminated from the segmentation mask after 
SVM classification. This is done by morphological operations combined by adaptive 
thresholding in skull-stripped FLAIR image. Finally, remaining false positives are 
further reduced by applying spatial constraints using an unsupervised clustering 
technique. Specifically, the automated segmentation tool FAST [21] was applied to 
segment the FLAIR image into 6 classes. The 6th class includes hyperintense regions 
in FLAIR, such as bright GM regions and lesions, and was used as a mask to 
constraint the segmentation.  

It should be noted that all steps in the WML segmentation procedure are automated 
and the same parameters are used for all subjects. Only one parameter has been shown 
to be important and vary across subjects, which is the threshold for binarizing the 
abnormality map generated by the SVM classifier. This threshold is optimized for 
each subject in the training set by maximizing the Jaccard score (Jac) [12]. The 
average threshold maximizing the Jaccard score is then used as the default value for 
segmenting new data. The Jaccard score is defined as Jac = TP / (TP + FP + FN), 
where TP, FP and FN stand for true positive, false positive, and false negative, 
respectively.  

3   Results 

The dataset consisted of 23 subjects having baseline and follow-up data and 19 
subjects having only baseline data. We used one subset to train a linear SVM 
classifier for lesion segmentation, a second subset to optimize the threshold (based on 
the Jaccard score) for generating a binary lesion mask from the abnormality map and 
the remaining subjects (N=16) to assess the 4D the segmentation method. In the future 
we plan to perform  leave-one-out  cross validation for training and  testing in order to  



  

Fig. 2. Evaluation of 4D WML segmentation. The 1st row shows the baseline and the 2nd row 
the follow-up images. The automatic WML segmentation (red) in baseline is very similar to the 
expert-defined WML (green). The zoomed figures in 2nd row show the result of two histogram 
equalization approaches: the proposed TVR (left) versus the standard IVR (right). 

exploit more effectively the dataset.  
Fig. 2 shows the progression of white matter lesions in an elderly subject. The first 

row illustrates the baseline image and the corresponding lesion segmentation (red for 
our method and green for the expert-defined WML). It can be noticed the 3D WML 
segmentation has high sensitivity and specificity. The second row shows the follow-
up image and the segmentation produced by our method by either aligning the 
histogram of the follow-up image to the intensity-normalized baseline image 
(proposed approach, shown on the left) or, as usually performed, by aligning the 
histogram of the follow-up image independently to the template image (usual 
approach, shown on the right). The proposed approach has higher sensitivity in WML 
segmentation.  

Since expert-defined ground truth is not available for the follow-up studies, the 
segmentation in the follow-up cannot be directly assessed. However, we calculate the 
lesion volume in baseline and follow-up studies and assess the rate of change by the 
gradient of the time function. Since only disease progression (increasing lesion load) 
is expected, the temporal consistency of the multi-parametric segmentation scheme 
can be easily evaluated. The lesion load for baseline and follow-up data is shown in 
Table 1. The results show that the proposed TVR approach for jointly normalizing the 
histograms of baseline and follow-up images, gives increasing lesion volume for all 
subjects. On the contrary, the alignment of histograms of each baseline and follow-up 
images independently to the template applying a global transformation, does not 
optimally estimate the MRI dynamics for each subject and therefore false reduction in 
lesion load is observed. An example is shown in Fig. 3 (bottom right) where the 
follow-up images are processed independently of the baseline using the IVR approach. 
It can be seen that one of the lesions has not been detected in the follow-up study. 



4   Discussion and Conclusions 

The objective, quantitative, and reproducible evaluation of WMLs has been a 
challenge in many neuroimaging studies. Although qualitative readings have been 
employed by many studies, the relatively limited sensitivity and inter-rater agreement 
is an obstacle, particularly in longitudinal studies or in studies seeking to detect subtle 
effects. This paper presents a CAD-system for monitoring the progression of WMLs 
that is based on the integration of different MR acquisition protocols and training of a 
nonlinear pattern classification algorithm. Our experiments show that the proposed 
system segments WML accurately even when the load is small. More important, by 
jointly normalizing the histogram of baseline and follow-up images, lesion load 
increase was consistently observed for all subjects. 

We are currently in the process of applying this method to data from different 
centers in multi-site studies seeking to quantify vascular disease.  
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Volume increase in 
follow-up (%) 

Volume 
in baseline 

(mm3) TVR IVR 

1622 91.22 38.05 

1371 11.73 -4.81 

654 375.00 340.32 

2716 63.69 55.15 

427 142.59 116.05 

1113 7.58 -11.14 

3533 15.52 27.16 

2078 170.43 132.74 

272 20.39 -18.45 

3987 42.79 27.84 

1192 90.27 27.21 

1553 144.99 53.65 

1830 42.80 18.88 

1972 78.74 28.61 

308 44.44 -56.41 

198 8.00 5.33 

Fig. 3. Example illustrating misleading disease 
regression when using the IVR approach. 1st row: 
expert-defined WML (green) and WML 
segmentation in baseline. 2nd row: WML 
segmentation in follow-up with TVR approach 
(left) and IVR approach (right). The TVR
approach is more consistent, whereas the IVR
approach misses a lesion in the follow-up that 
was there in the baseline.  

Table 1. Evaluation of WML 
progression in 16 participants 
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