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ABSTRACT

A deformable registration method is proposed to register a 

brain atlas with tumor-bearing brain scans. The tumor mass 

effect is first simulated in the (normal) atlas, using a 

biomechanical model of mass effect. The tumor-bearing 

atlas is subsequently warped to the patient’s scan by a 

deformable registration method, built upon the idea of 

HAMMER registration algorithm developed for normal 

brains. The potential of using the pattern of deformation 

around the tumor region to optimize the location of tumor 

seed and other parameters of the tumor model is also 

explored. Quantitative evaluation on simulated data shows 

that the proposed method achieves accuracy similar to that 

achieved in registration of images without tumors. 

Moreover, limited registration results on real tumors are 

promising.  

1. INTRODUCTION 

The overall goal of our study is to construct statistical 

atlases from images of brain tumor patients. These atlases 

can ultimately integrate a variety of patient data and link 

them to outcome measures. For example, patterns of 

progression of brain gliomas can be systematically 

investigated in large cohorts of patients via a variety of 

imaging methods (conventional MRI, perfusion, 

spectroscopy, DTI) with the goal of finding predictive 

imaging-based factors for tumor progression. Moreover, 

radiation dose distribution, tumor location relative to brain 

structures and outcome measures, can be integrated in order 

to elucidate relationships among these variables that can 

assist in radiotherapy and radiosurgical planning. To 

achieve this, a method that is able to register a stereotactic 

brain atlas with the patient images must be available. 

However, most of the available registration methods are 

designed to register a normal atlas with normal subjects. If 

directly applying those methods to tumor patient images, the 

registration around the tumor region can fail due to 

substantial image dissimilarities and deformations. 

The proposed approach is designed based on the idea of 

decoupling the total deformation (between normal atlas and 

patient scan) into two basic components: (i) the tumor-

induced deformation, which can be modeled by a tumor 

growth and mass effect model [1, 2]; (ii) the inter-subject 

deformation, which can be estimated by a registration 

algorithm. Similar approaches have already been 

investigated [3-7]. Some of these methods used a normal-to-

normal brain matching method after shrinking the tumor in 

brains [3]. Some applied first an affine transformation 

between the normal atlas and the patient’s image and 

subsequently either used a rich tumor simulation model of 

mass-effect and invasion without further accounting for the 

inter-subject differences [6], or used a simplified radial 

growth model refined by a non-rigid deformation based on 

optical flow [4, 5]. Other methods just combined the 

Talairach transformation with the simple radial expansion 

model [7] in order to speedup the algorithm.  

In this paper, we focus on the image registration 

component of the proposed framework using an elastic 

feature-based registration method based upon the idea of 

HAMMER registration algorithm developed for normal 

brains [8]. One of the challenges here is to reliably establish 

anatomical correspondence in regions around the tumor, 

while maintaining good registration in the healthy brain 

anatomy. 

2. METHODS 

The proposed registration method is designed to have the 

following three properties. (i) It aims at determining 

anatomical correspondences if such correspondences exist, 

rather than matching image intensities; (ii) it is robust to 

slightly inaccurate estimates of the tumor simulation 

parameters; (iii) it aims at estimating the optimal parameters 

for the tumor growth model by examining the deformation 

pattern around the tumor — the hypothesis is that optimal 

tumor parameters minimize the discrepancy between the 

atlas with a tumor and the patient’s images. For determining 

anatomical correspondences, an attribute vector is attached 

to each image voxel, aiming at distinctively summarizing 

the anatomical context around that voxel, including healthy 

and malignant tissue. For better robustness, we define a 

confidence level for tissue classification and introduce 

certain constraints in the calculation of the global 

component of deformation. Finally, for estimating optimal 

tumor growth parameters, we place special emphasis on the 

warping of the tumor neighborhood, such as modifying the 

strategy of selecting and focusing on salient points for 

registration in HAMMER [8]. We hope that the 

incorporation of several image-based and deformation-based 

criteria into a single evaluation measure will reveal 
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information about the accuracy of the proposed framework 

and more specifically the estimation of the tumor growth 

model parameters. 

2.1. Tumor growth simulation 

We use the nonlinear biomechanical model in [1, 2] to 

simulate tumor growth in the atlas. It should be noted that 

any other approach of modeling the impact of macroscopic 

tumor growth on the surrounding normal parenchyma could 

be used instead. The amount of tissue death is simulated by 

replacing a part of the brain parenchyma with a small tumor 

mass, whose location and size are parameters of the model 

(typically to be estimated from the patient’s images). The 

possible initial peri-tumor edema is similarly defined by an 

edema mask spanning only over white matter regions. The 

mass effect of the tumor growth is modeled by applying a 

pressure normal to the initial tumor boundary and solved by 

the finite element method. The boundary conditions and the 

material properties complete this relatively basic model of 

mass effect and tissue death.  

2.2. Registration method 

The automatic elastic registration algorithm is applied on 

skull-stripped [9] and segmented images [10], which have 

been first linearly aligned [11]. It is based on a coarse to fine 

resolution scheme of three levels, following the general 

framework of the HAMMER algorithm [8]. At each 

resolution, the deformation field is calculated according to 

the hierarchical approximation of an energy function, which 

consists of a similarity matching criterion defined in the 

template space, a constraint on the inverse matching, and 

smoothness constraints on the displacement field.  

An attribute vector, 3,2,1,)()( ii , is defined 

for each image voxel, reflecting edge information ( ),

image intensity ( ), and geometric moment invariants 

( Kj ,..,1, ) for each one of the K tissue types, 

respectively. In case of images with tumor, the attribute 

vector is enriched by introducing an additional attribute, ,

which reflects the signed distance from the tumor boundary. 

In the brain parenchyma, the features that drive the 

deformation are selected hierarchically according to the 

distinctiveness of their attributes, such as roots of sulci, 

crowns of gyri, or voxels located on strong and isolated 

edges. Moreover, driving voxels are selected in the areas 

around and very close to the tumor, which is denoted by VT

in template and VS in subject, respectively. The tumor 

neighborhood changes according to a threshold, which is 

higher for lower resolutions due to the smaller number of 

driving voxels, i.e. 8, 4, 2mm for the low, middle and high 

resolution, respectively. At each resolution, the threshold 

also slightly increases during the hierarchical registration 

procedure, thus obtaining more driving voxels from the 

healthy brain tissue around the tumor. The similarity of two 

voxels  and  is defined as 
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The optimal correspondence is determined by integrating 

the similarity of the attribute vectors within a small volume 

around each driving voxel, accounting for the lack of 

distinctiveness of the attribute  in voxels with the same 

distance from tumor.    

The correspondence of driving voxels determined 

above is interpolated elsewhere via a Gaussian kernel 

function, in conjunction with a Laplacian-based smoothing 

that reduces with time as the level of confidence in 

estimating tumor parameters, , increases. Additional to the 

local smoothness constraints, global constraints are also 

applied, based only on point correspondences lying in the 

regions of high confidence. If the estimation of  is accurate, 

the displacement field in the region around the tumor is 

expected to be smooth, and conversely.  

2.3. Estimating from deformation around the tumor 

As we mentioned above, the pattern of deformation around 

the tumor can be indicative of the accuracy in estimating the 

parameters of the tumor model, . If  is wrong, and thus 

tumor is incorrectly simulated in the atlas, unrealistic and 

severe deformations are expected around the tumor region, 

when trying to match the atlas with the patient’s image. 

Conversely, if the estimations of tumor location and mass 

effect in the atlas are in agreement with those in the patient, 

a relatively smooth deformation should be obtained. In this 

section, we briefly describe an attempt to utilize the 

characteristics of the deformation field as well as the 

anatomical characteristics of the co-registered images 

around the tumor for refining our estimate of . The 

estimation error , given , is calculated in a volume ,

defined in the subject brain within a specific distance r from 

tumor ( mmr 15 ). It is the linear combination of four 

normalized measures Mi
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where ia  is a weighting parameter for each measure, and 

iV  is the volume over which each measure is 

calculated. The weighting parameters are currently 

determined experimentally. M1 and M2 are defined to reflect 

the similarity of co-registered atlas and patient’s images and 

the similarity of their attribute vectors, respectively. M3 and 

M4 are defined to reflect smoothness properties of the 

deformation field itself, using the Jacobian determinant and 

the Laplacian, respectively. The details are omitted due to 

space limitations.  
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3. RESULTS 

The registration method has been evaluated in three 

different cases: (i) both the variation in the anatomy and the 

deformation caused by tumor growth are simulated and thus 

can be used as gold-standards, (ii) tumor growth is 

simulated in a real MR dataset, (iii) a normal atlas is 

registered with a real patient’s scan. The first two cases are 

designed to quantitatively assess the registration accuracy 

by manually placing the tumor seed in the correct or in 

wrong tumor locations. Concerning the real case where  is 

unknown, tumor growth is simulated using three different 

sets of  and then the best  is chosen by visually evaluating 

the registration result for every one of them. This part will 

be performed automatically in the future by using as 

evaluation function the estimation error  proposed in 

Section 2.3. The applicability of  in optimizing the tumor 

growth parameters is investigated in the Section 3.4 of the 

results.  

Hereby we would like to notice that although the 

proposed framework has been applied to monofocal tumor 

growth, it can easily be extended to cases with multiple 

lesions. However such an extension might be redundant, 

because such lesions are usually very small and their mass 

effect can be ignored. Thus, a normal brain registration 

method might also be suitable.  

3.1. Simulated brain deformation and tumor growth 

Anatomical deformation is simulated by the method in [12], 

to create a synthesized brain from a template brain. Then, 

tumor growth is simulated in both template and synthesized 

brains in the corresponding locations. The latter is treated as 

the tumor-diseased subject. The procedure has been 

repeated twice using two different pressures to produce 

tumors of medium size and large size. For both pressure 

values, we have calculated the root-mean square (rms) and 

the maximum (max) error from the tumor-bearing subject to 

the normal template between the deformations simulated 

and the deformation estimated by our framework. The 

calculation is separately performed over the tumor 

neighborhood  and the rest of the brain. The results are 

given in Table 1. For comparison, the HAMMER algorithm 

is used to warp the normal synthesized brains (without 

tumors), yielding an rms error 0.797mm and a max error

6.470mm. It can be observed that the presence of tumor does 

not drastically reduce the registration accuracy in the brain 

regions that are not close to the tumor (Table 1, 2nd row), 

compared to the performance of HAMMER in registering 

the  normal  synthesized  brains.  A  small  amount  of  error  

Table 1. Registration accuracy on simulated data by 

correct estimation of tumor growth parameters ( 0).

medium pressure large pressure 
domain 

rms max rms max

 2.139 5.930 3.729 8.643 

brain\  1.157 7.035 1.181 7.296 

increase is reasonable, given the interpolation errors due to 

the transition between the 3D cubic mesh and the finite 

element mesh used for the tumor model. Moreover, as 

expected, the rms error increases in  with increase of 

tumor size, which is more than that in the rest of the brain. 

Fig.1 shows the warping result for the tumor-deformed 

template with large pressure by correct estimation of tumor 

parameters, 0. The superimposition of subject edges on the 

template image shows the visible improvement after 

deformable registration. 

In order to investigate the effect of tumor growth 

estimation, we simulated a tumor in the template image 

using the same initial seed and the medium pressure as 

before, but at six different locations ( 1- 6) around the 

correct location ( 0) in a distance ±6mm in each axis. Then, 

we warped each tumor-bearing template to the tumor-

bearing subject. For the six locations, the rms error varied 

between 3.375mm and 5.068mm in tumor neighborhood 

and between 1.154mm and 1.235mm in the rest of the brain. 

The max error has increased for all six locations (9.384 

15.838mm), but was located inside the tumor region .

These results show that the proposed method is robust in the 

brain regions not close to the tumor, but sensitive around the 

tumor neighborhood. This is actually consistent with our 

expectation as indicated in Section 2.  

3.2. Simulated tumor growth in real brains 

This experiment evaluates the performance of the proposed 

method, based on manual landmarks, in registering two real 

brains where tumor growth is simulated in both of them. A 

set of locations, R0, is first predefined in the real brain used 

as template. Then, two raters placed independently the 

corresponding landmarks, R1 and R2, in the second real 

brain, which is used as subject. The landmarks R1 and R2 are 

displaced according to the tumor-induced deformation in 

subject. Then, those displaced landmarks are registered to 

the tumor-bearing template with the proposed registration 

algorithm and subsequently mapped to the pre-tumor 

template by using the inverse tumor growth deformation, 

thus ideally matching with R0. The minimum (min), average 

(avg), and maximum (max) landmark errors are computed, 

as shown in Table 2. The maximum error is quite large; 

however, the inter-rater variation in the normal subject 

(R1R2) is also very large.

(a) (b) (c) (d)

Fig. 1 Example of simulating tumor in a normal template with 

initial seed in (a) and warping it to a simulated tumor-diseased 

subject in (d). The white curves represent the edges of the tumor-

diseased subject, and are overlaid on the template (b) before and 

(c) after registration.
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Table 2. Landmark errors on a real brain with/without 

tumor using the proposed framework/HAMMER 

respectively.

pairs min avg max

R1R2 0.938 5.188 19.691 

Proposed

framework 

R1R0

R2R0

0.940

0.791

8.241

6.680

18.463

16.262

HAMMER 
R1R0

R2R0

1.463

1.223

8.775

7.003

21.487

14.457

For comparison, HAMMER is used to map the landmarks in 

the two real normal brains (without tumor). It can be 

observed that registration accuracy is at the same level, thus 

indicating the ability of the proposed framework to 

compensate for the large tumor-induced deformations and 

image dissimilarities.   

3.3. A real case of tumor-diseased brain 

Tumor in normal template is roughly simulated by visually 

comparing the output of the simulation (Fig.2a) with the 

patient’s image (Fig.2c). As previously mentioned, this part 

will be improved via an iterative scheme based on the 

minimization of , to be developed in future. The tumor-

induced deformation is further refined by the proposed 

registration method to account also for the inter-subject 

variability. The high similarity between the warped tumor-

simulated template (Fig.2b) and the patient’s image can 

easily be observed. 

3.4. Tumor parameter estimation 

In order to test the potential of optimizing the estimation of 

tumor growth parameters, , preliminary results were 

obtained using the simulated data in Section 3.1 as they 

provide ground truth about . The medium pressure value 

has been applied and the four measures have been calculated 

as a function of . Table 3 shows that, after registering 

images with the proposed method, all four measures have 

the smallest value for the case of correct tumor parameter 

estimation ( 0), thereby indicating the potential of using 

these measures for optimizing the estimation of . Our 

results in this section are quite preliminary, and must be 

further investigated in more datasets.

(a) (b) (c)

Fig.2. Example of a tumor-simulated template (a) before 

and (b) after warping to a real tumor-diseased brain in (c). 

Table 3. Sensitivity of Mi as a function of .

M1 M2 M3 M4 E

0 0.2239 0.4550 0.0062 0.0112 0.1629

1- 6

0.2395

0.3100

0.4718

0.4866

0.0067

0.0088

0.0141

0.0153

0.1747

0.1910

4. CONCLUSIONS 

An elastic feature-based registration method, along with a 

tumor mass-effect model, has been presented for the 

registration of tumor-diseased brains. Moreover, an 

estimation measure has been proposed for optimization of 

the corresponding tumor model parameters. After 

optimization is achieved, the proposed registration method 

shows reasonably good performance for both the tumor and 

other brain regions, as validated on simulated and real tumor 

cases.
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