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Abstract 
 
In this paper, a three-dimensional (3D) image registration 
scheme along with fusion tools is developed and 
incorporated within a model simulating tumor growth and 
response to radiotherapy. This biosimulation model 
attempts to predict and visualize in three dimensions the 
in vivo tumor behavior. The necessary information for the 
initialization and the adjustment of the model can be 
provided from different medical examinations. The 
present study focuses on the development and evaluation 
of a technique that enables input information provided 
from different medical imaging modalities to be 
efficiently exploited by tumor growth simulation 
algorithms through the registration and fusion of 
computed tomography (CT) or positron emission 
tomography (PET) to magnetic resonance imaging (MRI) 
data. 
 
Keywords 
registration, fusion, tumor, simulation model, irradiation 
 
 
1. Introduction 
 
Current treatment planning algorithms are based on the 
concept of physical optimization of the dose distribution 
and rely on rather crude biological models of tumor and 
normal tissue response. Such algorithms practically 
ignore the highly complicated dynamic behavior of 
malignant cells and tissues. The introduction of advanced 
biosimulation methods based on cell proliferation 
mechanisms as well as on information drawn from the 
cellular and molecular properties of each individual 
malignancy and each individual patient is expected to 
substantially improve the radiation therapy efficiency. 
Novel tumor growth and response to irradiation 
simulation algorithms have been presented in [1]. The 
information required to initialize the developed 
biosimulation model is provided by different medical 
examinations. The combined exploitation of detailed 
three-dimensional (3D) representations of anatomy, 
pathology and function is achieved by applying a 3D 
registration and fusion scheme. 
In this paper, the application of 3D registration methods 

to tomographic data of the brain is presented, in order to 
provide input to a tumor simulation model. As the 
simulation model is quite general, i.e. the cytokinetic and 
radiobiological properties of any particular type of tumor 
cells can provide input to the computer simulation, the 
registration method should be able to succeed in the 
majority of solid tumor growth cases. Registering 
intermodal medical images is a tedious process, since the 
identification of points correspondence between the two 
images is sometimes a difficult task. Moreover, the 
presence of characteristic edges cannot be used as a 
prerequisite for the registration. Therefore, an automatic 
registration method is proposed, in this paper, for 
registering multimodal medical images, which does not 
require any user intervention. The automatic registration 
method is based on the maximization of mutual 
information. Maximization of a similarity metric based on 
information theory, such as mutual information, has been 
demonstrated to be a very powerful criterion for 
multimodal medical image registration [2][3][4][5]. 
However, the presence of many local maxima during the 
iterative process poses a problem in finding a close 
starting estimate. The methodological novelty of the 
proposed approach lies on an assembly of algorithms 
determining in real execution time an initial guess of the 
final solution and reducing the risk to converge toward a 
misleading maximum. 
The paper starts with a brief description of the in silico 
tumor evolution. Since a detailed description of the 
growth model can be found in [1], emphasis is put only 
on information input requirements based on various 
medical imaging modalities. Next, a spatial registration 
scheme is introduced and several image processing tools 
for fusing the registered images are presented. 
 
 
2. The in silico model of tumor growth and 
response to irradiation  
 
The assumptions that follow pertain to the in vivo 
simulation model developed by our research group [1]. As 
a first step, the imaging data (e.g. CT, MRI, PET slices), 
including the definition of the tumor contour and the 
anatomical structures of interest, the histopathologic (e.g. 
type of tumor) and the genetic data of the patient are 



appropriately collected. In the case of radiotherapy, the 
distribution of the radiation dose in the region of interest, 
as computed during the treatment planning procedure, is 
also acquired. 
A set of rules for the cell division and interaction behavior 
is adopted in which a tumor cell when cycling passes 
through the phases G1 (gap 1), S (DNA synthesis), G2 
(gap 2) and M (mitosis) [6]. The adopted cytokinetic 
model is shown in Fig.1.  
The description of the biological activity of the tumor is 
implemented by introducing the notion of the 
�geometrical cell�. The anatomical region of interest is 
quantized in geometrical cells. Each geometrical cell 
belonging to the tumor contains a number of biological 
cells �residing� in various phases within (G1, S, G2, M) or 
out of the cell cycle (resting phase G0, Necrosis N, 
Apoptosis A). The number of biological cells constituting 
each phase class is initially estimated according to the 
position of the geometrical cell within the tumor and the 
metabolic activity in the local area (e.g. based on PET, 
functional MRI). Both necrotic and apoptotic cell death 
are taken into account. The mechanical properties of the 
surrounding tissue are also taken into account in a rather 
simple way (e.g. absolute lack of deformability in the 
bone). 

In case that radiotherapy treatment is delivered, the 
response of each cell to irradiation (Fig.1) is described by 
the Linear Quadratic model [6]. The radioresistance of the 
cells depends on the cell phase they reside. 
The geometrical mesh covering the anatomic area of 
interest is scanned every T units of time. For each phase 
class of a given geometrical cell, behavior algorithms 
based on the cell cycle phase duration of the tumor cells, 
the distance from the external boundary of the tumor, the 
Linear Quadratic model, the genetic data of the tumor 
determine the updated state. Random number generators 
are used in order to simulate the statistical nature of 
various phenomena. 
According to the above described process, the 3D tumor 
evolution is simulated. In case that radiotherapy treatment 
has been prescribed, the distribution of the absorbed dose 
(e.g. in Gy) in the region of interest is also provided to the 
biosimulation software in order to �predict� the most 
likely spatio-temporal response of the tumor.  
 
 
3. The image registration method 
 
In the specific application addressed here, image 
registration is of interest for the following three tasks. The 
first task concerns the knowledge of the dose distribution 
within the tumor and the surrounding tissues. In 
radiotherapy treatment planning, for both external 
radiation and brachytherapy, the dose calculation is 
usually based on the CT images. On the other hand, the 
delineation of a target volume is more precisely 
performed in the MR images. If registration is achieved, 
the  coordinates  of  the  tumor  from  the  MR  scans  are  

 
 
Fig. 1. Cytokinetic model of a tumor cell. The solid lines 
represent the transition of a cell into the various phases during 
tumor growth. The dashed lines represent the tumor cell 
response to irradiation. 
 
transferred into the CT stereotaxy. Thus, the physical dose 
distribution, as calculated from the treatment planning 
system, can be transferred to the MR images. This 
combined information can be fed to the simulation model 
in order to predict the response of each individual cell to 
irradiation. This case pertains mostly to the simulation of 
brachytherapy, which is characterized by inhomogenous 
dose distributions, especially in classical intracavitary 
treatment. The simulation of some treatment methods of 
external beam radiation therapy (i.e. IMRT) could be 
performed assuming high homogenous dose to the tumor 
and ignorable dose to the surrounding healthy tissues [1].  
The second task related with the application of image 
registration techniques for the needs of the biosimulation 
model refers to the quantization of the anatomical region 
of interest. A specialized doctor can delineate the clinical 
boundary of the tumor and often its necrotic area based on 
the corresponding MR imaging data. However the 
information about the metabolic activity (and therefore 
the density of the tumor vasculature) is usually available 
only through PET or functional MR images. Thus, the 
definition of the contours of areas corresponding to the 
different cell phases by the specialist with sufficient 
accuracy requires successful alignment of multimodal 
medical images.  
In contrast to the above described image registration tasks 
referring to spatial registration, the third task pertains to 
temporal registration of images of the same modality in 
order to follow up the impact of therapy over time. 

This paper focuses on spatial registration of the 
multimodal imaging data, as the problem of monomodal 
registration is less complex, but the methodology 
proposed may be adjusted to the temporal registration as 
well. An automatic registration method has been 
developed, which has been evaluated on CT to MR 
examinations. The automatic method has also been tested 
in the case of PET to MR registration. The preliminary 
results have shown that the accuracy of automatic 
registration involving CT was superior as compared with 
that of registration involving PET. Based on these results, 
the automatic method should be properly modified for the 
case of registering PET to MR data.  



3.1 Methodology 
 
A fully automatic two-step procedure for CT-to-MR 
registration applying rigid-body transformation is 
developed. If the scanner calibration problems and the 
problems of geometric distortions have been minimized, 
the rigid transformation is the most convenient for 3D 
scans of the head. The rigid-body transformation is 
represented by three translations and three rotations along 
the x, y and z axes. The three scaling factors are directly 
calculated with the voxelsize ratio of the reference image 

RI  and the floating image FI  [2]. In such a case, the 
floating image is resampled using trilinear interpolation. 
The choice of a 6-parameter rigid-body transformation is 
based on the results of a comparative study in brain 
imaging [7]. According to this study, the accuracy and the 
success rate in the case of a 6-parameter rigid-body 
transformation is higher than in the case of a 9-parameter 
rigid-body transformation. In addition, the 6-parameter 
transformation is twice as fast than the 9-parameter 
transformation.  
 
 
STEP I.  

In the first step, a seeded region-growing algorithm is 
used to automatically extract the head from the image 
volumes [8]. Two thresholds are defined, a low for the 
MR image and a high for the CT image. If one of the 
modalities had been PET or SPECT, the object to extract 
would have been the brain, because the scalp is not well 
perceptible in these modalities.  

The objects (heads) extracted from the CT and the MR 
image are shaped similarly and they may be registered 
approximately by applying a principal axes 
transformation (PAT) [9]. First, the centers of mass of the 
two objects are aligned for translational correction 
( dz,dy, dx, ). Then, the rotational errors are eliminated by 
rotating the objects around the center of mass ( zyx r ,r ,r ). 
For this purpose, the eigenvectors of the covariance 
matrix of the objects are computed, which specify the 
direction of the axes of each object reference system. The 
eigenvectors are computed by applying the Jacobi method 
[10] since the covariance matrix is symmetric. The 
direction of the axes of the extracted 3D objects is not 
dependent on the object�s exact outer surfaces. On the 
contrary, the application of a surface-matching algorithm 
would require to investigate the impact of the 
segmentation step. 

While the application of the PAT method in image data of 
the head leads to a satisfactory approximation for the 
rotation around the y axis ( yr ) and the translation in x- 

and y-direction ( dy dx, ), it fails to approximate well the 

translation along the z axis ( dz ) of the objects, because 
the clinical acquired images overlap only partially. For 
this reason, an exhaustive search along the z axis with 

offset of 50 mm around the estimated dz value is 
performed, in order to enhance the matching by 
maximizing the cross correlation of the segmented 
(binary) images. The cross correlation (CC) is a suitable 
matching criterion for binary images concerning both 
accuracy and speed performance. The cross correlation is 
defined as 
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where FI  and RI  are the mean values of the unregistered 
image FI  and the reference image RI  respectively and 
T(x,y,z) is the transformation computed by principal axes 
combined with the z-tranlation vector. As the only 
parameter optimized over is dz , the binary images are 
subsampled with a subsampling factor of 2 along the x 
and y axes.  
The other transformation parameters ( zyx r ,r ,r dy, dx, ) are 
kept constant, as determined by the PAT method.  
 
 
STEP II.  

The rigid body transformation parameters obtained from 
the previous step are used as starting estimates for the 
second step of the procedure, which involves registering 
images FI  and RI  by maximizing the mutual information 
(MI) using local optimization techniques: 
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where 0�G-1 is the intensity range, ),( lkp
RF II  is the 

joint probability distribution and )(),( lpkp
RF II  are the 

probability distributions of the overlapping volume of 
images FI  and RI . The joint probability distribution is 
constructed by rigidly transforming samples in the 
floating image into samples in the reference image. Equal 
distance of the samples in the three axes has been used. 
Trilinear interpolation has been applied to compute the 
voxel intensity in the reference image [11].  

Two optimization methods, namely the Powell�s method 
[10] and the Downhill Simplex method [10] have been 
investigated, using as initial guess the vector of the 
estimated parameters in step I. Powell�s method was 
chosen as it has been proved more precise than any other 
optimization methods for MI-based image registration [3]. 
The initial evaluation order of the parameters was 

yxz r ,r dz, ,r dy, dx,  [3]. The set of directions is not 
reinitialized to the basis vectors during the optimization 
procedure. The fractional tolerance in the function value 
is 10-4. 
 



4. Fusion Process 
 
A fusion process has been developed and applied 
following the registration process. The fusion process is 
independent from the selected registration method. As a 
single optimal way of fusing registered images does not 
exist, different image processing tools have been 
developed, allowing the user to select the most 
appropriate ones. Thus, various tools enabling both visual 
assessment of the registration achieved and combination 
of the complementary information are available. The 
slices of the reference and the transformed data sets are 
displayed side by side with a cursor pointing to 
corresponding voxels. 
Checkerboard images can be produced with alternate 
blocks of voxels displaying image data from each 
modality [12]. If the user sets the blocksize equal to one 
pixel, the individual pixels cannot be distinguished, 
resulting in effective fusion of the two datasets. If a larger 
blocksize is selected, the registration result can be 
evaluated by checking the continuity of the edges.  
Another tool combines anatomical structures or regions of 
interest in one image, i.e. it displays all image pixels, 
which are above a user-defined threshold (e.g. 550HU), 
with the color from the CT image, and the remaining 
pixels with the color from the MR image. 
Furthermore, color overlay techniques are used to 
generate helpful displays. One modality is displayed using 
a colormap while the other is displayed on an intensity 
scale.  
 
 
5. Results 
 
The experiments were performed on seven patients data 
sets. Each patient data set consisted of a CT image and 
three MR images (PD, T1, T2), as well as three corrected 
for static field inhomogeneity MR images (PDrect, 
T1rect, T2rect) provided by J.M. Fitzpatrick [13]. For 
each patient data set, the CT image was registered to the 
MR images using the MR image as the reference image, 
resulting in 41 registration experiments in total (the 
T1rect image was not available for one patient). All 
images are axial and their characteristics are summarized 
in Table I. The CT images were subsampled in the axial 
plane to yield the same image size as the MR image, thus 
increasing the execution speed. All images were 
converted from 16-bit to 8-bit format by rescaling the 
intensity values to the range of 0-255. In this case, the 
maximum joint histogram size was 256×256. The total 
execution time was approximately 3 minutes on an AMD 
Athlon XP 1800 and depends actually only on step II, as 
step I of the registration method performs in real time. 
In order to evaluate the registration accuracy, the 
stereotactic registration solution provided by the RREP 
project [13] was used as a reference. The error was 
evaluated by the root-mean-square (rms) distance between 
the reference and the computed transformation at eight 
points  near the brain surface.  Ground truth was  obtained 

Table I. 
Image characteristics 

Image Num. Voxels Voxel size (mm3) 

CT 5122×(27-34)* 0.652×4.00 

PD 2562×(20-26) 1.252×4.00 

T1 2562×(20-26) 1.252×4.00 

T2 2562×(20-26) 1.252×4.00 

PDrect 2562×(20-26) (1.25-1.27)2×(4.00-4.12) 

T1rect 2562×(20-26) (1.25-1.27)2×(4.00-4.12) 

T2rect 2562×(20-26) (1.25-1.27)2×(4.00-4.12) 
*before subsampling 
 
using bone-implanted skull markers. The traces of the 
stereotactic markers and the frame were removed from the 
images before registration. The median registration errors 
(in mm) for all patients� datasets for each MR-modality 
are shown in Table II.  
The results demonstrate that the median errors show 
subvoxel accuracy with respect to the stereotactic 
registration solution without any user interaction or prior 
knowledge about the gray-value content of the CT and 
MR images. Registration differences without subvoxel 
accuracy (5-20 mm) have been observed in 5 (out of 41) 
experiments. The influence and the importance of the 
rescaling of the intensities and the subsampling of the CT 
images on the registration success should be further 
investigated, although it seems not to deteriorate the 
optimization behavior. 
Following image registration, fusion tools can be used to 
provide helpful displays. As the registration of CT and 
MR images serves mostly in transferring the dose 
distribution calculated in the CT stereotaxy into the MR 
image, the fusion of the images itself does not seem to be 
necessary in accordance to the biosimulation model. The 
only case where fusion of CT and MR images shows 
interest for the model is when the tumor is near to bone 
that is not perceptible in the MR image. The bone is a 
structure of interest because it sets the restriction to the 
simulated tumor not to grow in this direction. On the 
contrary the registration of MR and PET images is 
performed in order to fuse the different image modalities 
and highlight the metabolic activity. Therefore the 
following example (Fig. 2) reveals to the fusion of MR 
and PET datasets, using color overlay techniques 
described in Section C. The external surface of the tumor 
is visible in the MR image, whereas the necrosis is 
identifiable only in the thresholded PET image. 
Furthermore,  as  demonstrated  in  the  fused  image  the 

 
 

Table II. 
Median Errors (in mm) of the Automatic Registration 

Method 

PD T1 T2 PDrect T1rect T2rect 
3.05 2.59 3.00 1.93 1.99 2.09 



 
Fig. 2. The thresholded registered PET (left) and the MR-T2 
(right) datasets are displayed on top. The fused image is 
displayed zoomed on bottom. 
 
metabolic activity of the viable part of the tumor is 
inhomogeneous. The higher the metabolic activity the 
greater is assumed the ratio of the proliferating cells. The 
total tumor seems to be inactive, which means that the 
majority of the tumor cells are necrotic.  
 
 
6. Conclusions 
 
A 3D registration and fusion scheme was presented in 
order to combine information from multimodal medical 
data used to provide input to a 3D tumor growth 
simulation model for the purpose of radiotherapy 
optimization. By performing virtual insilico experiments 
based on the 3D simulation model, significant insight into 
the biological mechanisms involved in tumor growth can 
be gained. Furthermore, by providing the simulation 
model with the distribution of the absorbed radiation dose 
in the region of interest through the definition of a 
common CT-MR coordinates system, the prediction of 
tumor response to radiotherapy becomes more reliable. 
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