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Abstract

We present a general methodology that aims to learn
multi-variate statistics of high dimensional images, in or-
der to capture the inter-individual variability of imaging
data from a limited number of training images. The statisti-
cal learning procedure is used for identifying abnormalities
as deviations from the normal variation. In most practi-
cal applications, learning an accurate statistical model of
the observed data is a very challenging task due to the very
high dimensionality of the images, and the limited number
of available training samples. We attempt to overcome this
problem by capturing the statistics of a large number of
lower dimensional subspaces, which can be estimated more
reliably. The subspaces are derived in a multi-scale fashion,
and capture image characteristics ranging from fine and lo-
calized to coarser and relatively more global. The main
premise is that an imaging pattern that is consistent with
the statistics of a large number of subspaces, each reflect-
ing a marginal probability density function (pdf), is likely to
be consistent with the overall pdf, which hasn’t been explic-
itly estimated. Abnormalities in a new image are identified
as significant deviations from the normal variation captured
by the learned subspace models, and are determined via it-
erative projections on these subspaces.

1. Introduction
In medical image analysis, detection of abnormalities,

i.e. imaging patterns that do not conform to the normal
behavior of anatomy, is the major problem in many appli-
cations [1, 14, 8, 18]. A common approach for detecting
abnormalities is to use supervised learning techniques, as-
suming that labeled training data for the normal and abnor-
mal classes are available. These techniques learn a predic-

tive model from the positive and negative training samples,
which is then used for classifying a new sample as normal
or abnormal. Recent kernel-based methods, in particular
Support Vector Machines (SVMs), are known to obtain a
high classification performance on several clinical problems
[17].

The supervised learning approach has two major limita-
tions. First, the learned model is specific to a given type of
pathology. This means that one might need to train clas-
sifiers for many possible types of abnormalities, which is
often not practical or even possible, particularly when the
pathology is variable and/or unknown in advance. Sec-
ond, these methods are generally trained on local intensity-
based features, and they disregard the spatial information
that might be very informative. For example, a brain lesion
might have certain image intensity characteristics, but its
spatial/shape properties also carry important information.

In this paper, we present a more general framework in
order to overcome the limitations of the aforementioned ap-
proaches. The proposed method aims to learn the inter-
individual variability of the healthy anatomy, and to detect
abnormalities as deviations from the normality. It doesn’t
make any assumption about the characteristics of the ab-
normality, however it assumes that normal anatomy is rel-
atively consistent and its statistics can be estimated from a
number of representative examples. We focus on overcom-
ing limitations of such direct estimation of statistical varia-
tion, which is particularly challenging in high-dimensional
spaces and from limited sample sizes. As in [4] the learning
model is trained exclusively using images of healthy sub-
jects (referred as “normal images” through the paper).

The idea of learning a statistical model that describes an
object category from only the normal samples has been suc-
cessfully applied in a number of approaches, including the
popular shape and appearance learning models. In Active
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Shape Models method [2], an object is represented by a set
of landmark points, and a shape model that estimates the
locations of these landmark points is learned via Principal
Component Analysis (PCA). However, learning multivari-
ate statistics of very high dimensional data is a very chal-
lenging task. Accurately estimating the pdf of a 3D image
of the entire brain could require tens of thousands of train-
ing images, if not more. In practical applications, the num-
ber of training samples available to be used for estimating
the pdf is very small relative to the dimensionality of the
image domain. Consequently, the direct application of clas-
sical subspace projection methods on the whole image do-
main performs poorly and can only capture the global vari-
ations of the data. Partitioning the image domain into lower
dimensional subspaces is a common approach against the
limitation of PCA in representing finer image details. In
block-PCA (also called modular PCA) method an image is
divided by a regular grid into smaller blocks and PCA is ap-
plied on each block independently [5]. A similar approach
is 2D PCA [16], where PCA is applied on a 2D image ma-
trix rather than a 1D image vector. In Wavelet Block-PCA
approach [3, 15], the image is decomposed into multiple
frequency subbands on which PCA is applied. In [7] a spec-
tral graph partitioning technique is applied for partitioning
the wavelet coefficients into correlated clusters.

Instead of imposing an ad-hoc partitioning scheme on
the image domain, we propose to extract a large number of
lower dimensional subspaces, each of which herein repre-
sent image patches, albeit they don’t necessarily have to.
We impose conditions that allow the statistical variations of
these subspaces to be estimated from the available training
data. For each subspace, a statistical model, which is used
for estimating the marginal pdf, is learned from the training
samples. Through an iterative procedure, which we call Sta-
tistical Model (SM)-constrained reconstruction, a new test
image is modified such that it will be consistent with all
subspace models. This procedure allows us to detect image
regions that deviate significantly from the normal variation,
and provides us a general framework to detect any kind of
abnormalities on high dimensional images.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the proposed method. The experimental
results are given and discussed in section 3. Section 4 sum-
marizes and concludes with additional discussions and fu-
ture perspectives.

2. Method

2.1. Formulation of the Problem

Consider images of a specific anatomic part coregistered
to the template image domain Ω as realizations of a d -
dimensional random vector I , consisting of d scalar ran-
dom variables [x1 , x2 , ..., xd ] corresponding to image vox-

els. The joint probability density function pdf of I

φ(I ) = φ(x1 , x2 , ..., xd) (1)

describes the relative likelihood for I to be observed. In
the d dimensional space, the set of normal images, i.e. im-
ages for which φ(I ) >= t (where t is a predetermined
likelihood value above which an image is considered nor-
mal), constitutes a hypervolume. An image I 0 that con-
tains abnormalities is expected to have a low likelihood. By
moving I 0 in the direction that maximizes its likelihood,
an estimated normal image I ∗ for which φ(I ∗) = t can be
obtained (Figure 1.a). Moving I 0 towards I ∗ should have
the effect of removing the abnormalities, and the voxelwise
difference between I 0 and I ∗ would correspond to a prob-
ability map of the abnormalities on I 0 .

Figure 1. Illustration of the SM-constrained reconstruction of the
healthy anatomy from an image containing abnormalities. a. for
the case where the pdf of the healthy anatomy is known. b. for the
case where the pdf is estimated through subspace models

However, in most cases, the pdf of the healthy anatomy
is unknown, while only a small set of training samples is
available for estimating it. In most practical applications,
the number of the training samples n is very small com-
pared to d . This is an important limitation for estimating
the pdf of high dimensional data accurately.

While φ(I ) can not be estimated accurately, pdf s of
lower dimensional subspaces can be estimated more reli-
ably (if the subspace is small enough, variation of the im-
age projection on it can be estimated from a given dataset).
Thus, in order to overcome the dimensionality problem, we
propose to sample a large number of subspaces Ω1, ...,Ωp
from Ω. Our main premise is that an imaging pattern that is
consistent with the statistics of a large number of subspaces,
each reflecting a marginal pdf, is likely to be consistent with
the overall pdf, which hasn’t been explicitly estimated.

An image I 0 containing pathologies can be constrained
to be normal by moving it in the d dimensional space such
that the likelihood of the new image I∗ will be high when
projected to each of the subspaces (Figure 1.b). The likeli-
hood within a subspace Ωi can be calculated by estimating
φ(I ∗Ωi

), the marginal pdf corresponding to the image patch
with voxels within Ωi, using the set of n training samples.



This reconstruction procedure can be formulated as an
optimization problem in which the following energy func-
tion is minimized:

E(I ∗) = ESIM (I ∗, I ) + λESM (I ∗) (2)

where the energy term ESIM reflects the image similarity
between the test image and the SM-reconstructed image,
and

ESM =

p∑
i=1

L(I ∗Ωi
) (3)

is the energy term reflecting the overall likelihood of the
SM-reconstructed image according to the statistical model
of each subspace. Here L is the likelihood function that re-
turns the likelihood of I ∗Ωi

according to the statistical model
of the ith subspace.

2.2. Extraction of Subspaces

Our main objective while extracting lower dimensional
subspaces from the image domain is to estimate the pdf
more reliably. The estimability of a subspace can be con-
sidered as a measure of its intrinsic dimensionality, which
is determined by the size of the subspace, in conjunction
with the variation of the image projection onto that sub-
space. Due to the high correlation among neighboring vox-
els in natural images, the intrinsic dimensionality of image
patches consisting of a set of neighboring voxels is gener-
ally much lower than their actual dimensionality.

Accordingly, we select subspaces as image patches con-
sisting of voxels in a neighborhood s = [sx , sy , sz ] around
a voxel at position {x , y , z}, for different values of x , y , z
and s . In that way, the set of all subspaces capture image
characteristics ranging from fine and localized to coarser
and relatively more global at different spatial locations of
the image domain.

A subspace with a low estimability means that the statis-
tical model learned from the training samples is not capable
to capture the variation of the imaging pattern on this sub-
space. An estimability score is calculated for each subspace
in order to exclude non-estimable subspaces. This score de-
pends on the selected modeling approach and is defined in
section 2.4.

2.3. Iterative Reconstruction Method

As the number of all estimable subspaces may be very
large for high dimensional images, we propose an iterative
procedure that provides an approximate solution to the opti-
mization problem defined in equation 2. The principal idea
is to constrain I to be consistent with the statistical model
of one subspace at a time, and to iterate over the subspaces
until the algorithm converges to a stable state where the SM-
reconstructed image jointly satisfies the constraints over all

subspaces. Algorithm 1 briefly presents an overview of the
algorithmic procedure.

Algorithm 1 Global algorithm of the iterative reconstruc-
tion method

1: I ∗ ← I
2: while I∗ has not converged do
3: Randomly select a subspace ΩSel

4: while ΩSel is non-estimable do
5: Select a new subspace Ω ′Sel
6: ΩSel ← Ω ′Sel
7: end while
8: Learn the statistical model for ΩSel

9: Modify I ∗ΩSel
such that it becomes consistent with

the learned model
10: Update I ∗

11: end while

12: Return I ∗

When a selected subspace is not estimable, two different
strategies are applied for selecting a new subspace:

1. Ignore the subspace and select a new one randomly

2. Decrease the size of the subspace until the new sub-
space becomes estimable. A number of different ways
can be pursued here, including reducing the size of
a patch, randomly sampling voxels from the patch,
or applying a low-pass filter to estimate only lower-
frequency characteristics of the patch. We have applied
the first approach that provides a more adaptive selec-
tion strategy where the largest estimable neighborhood
around {x , y , z} is detected.

2.4. PCA Model Within a Subspace

Various modeling approaches may be used for estimat-
ing the pdf within a subspace, and for the reconstruction
of an image patch. We applied PCA, a popular data analy-
sis method which calculates a number of principal compo-
nents that are frequently called principal modes of variation,
and which is based on the assumption that the data follow a
Gaussian distribution.

Let Yi ∈ <k×n be the data matrix containing k dimen-
sional data vectors I jΩi

, j = 1, ..., n, extracted from the i th

subspace of n training images, where n < k . Let Ci be the
covariance matrix of Yi. By applying PCA on Yi, we ob-
tain ĪΩi , the mean of n data vectors, Λi , the vector of n − 1
non-zero eigenvalues of Ci sorted in descending order, and
Qi ∈ <(n−1)×k, the matrix that keeps the n − 1 principal
components of Yi, i.e. the first n − 1 eigenvectors of Ci.



Estimability of a Subspace

We consider that a subspace is estimable if a significant
fraction γ1 of the overall variance of the data can be ex-
plained by a small fraction γ2 of eigenvectors. The thresh-
olds γ1 and γ2 are determined empirically. Normalized
eigenvectors

λ̂ik = λik/

n−1∑
j=1

λjk (4)

represents the fraction of variance contributed by each
eigenvector. We calculate

nλ = arg min
x∈{1,...,n−1}

x∑
j=1

λ̂ik ≥ γ1 (5)

If nλ < γ2 the block is considered estimable.

SM-constrained Reconstruction

When projected to the space spanned by Qi, the data
vector IΩi

can be represented by its projection vector (or
feature vector) Vi :

Vi = Qi
T (IΩi

− ĪΩi
) . (6)

As the application of PCA diagonalizes the covariance
matrix Ci, the pdf of IΩi

can be calculated by

φ(IΩi
) = φ(Vi) = ci exp{−1

2

n−1∑
k=1

v2
ik

λik
} , (7)

where ci is the normalization coefficient, and vik and λik
are the kth elements of Vi and Λi respectively. In fact,
the likelihood of IΩi

increases as the normalized Euclidian
norm of Vi decreases. Consequently, an image patch that
has a low likelihood can be constrained to have a desired
likelihood t by scaling down its projection coefficients by a
scalar factor a

Vi
′ = aVi s.t. φ(V ′i ) = t . (8)

The SM-reconstructed image patch I ∗Ωi
can be obtained

by projecting V ′i back to the original space

I ∗Ωi
= QiV

′
i + ĪΩi . (9)

The method used for the reconstruction is based on the
assumption that the normal variation lies within a low di-
mensional subspace (the PCA subspace). The image patch
is decomposed into two components: one within the PCA
subspace, and the other orthogonal to PCA space. By pro-
jecting an image patch into the PCA space, the orthogonal
component is considered as a residual error and discarded.

Figure 2. Illustration of the reconstruction of an image patch

However, depending on the complexity of the imaging pat-
terns within a subspace Ωi, the PCA subspace may not cap-
ture the normal variation. For this reason, we propose a
more conservative reconstruction strategy where the orthog-
onal component is partially preserved, by projecting an im-
age patch to an orthogonal distance `i from the PCA space,
which is determined adaptively. If available, a spatial prior
that reflects image complexity may be used for calculating
`i. As this is not the case in our work, we learn `i from the
data, by calculating the average residual error of the training
samples through a leave-one-out (LOO) cross-validation:

`ji = ||I jΩi
−Qj

iQ
j
i

T
I jΩi
||2 , (10)

`i =
1

n

n∑
j=1

`ji . (11)

Here Qj
i is the PCA basis learned from the training set

excluding the jth sample, and ||.|| denotes the L2 norm.
In that way, the normal variation within a subspace Ωi

is modeled as the volume that lies within a hypercylinder.
The reconstruction moves a given image patch to the closest
point on this hypercylinder. Figure 2 illustrates the recon-
struction procedure.

3. Experimental Results
We evaluated the proposed method on segmentation of

white matter lesions (WMLs) and infarcts on brain MR im-
ages. WMLs are common abnormalities of the brain, which
may be the result of different brain diseases, such as mul-
tiple sclerosis and cerebrovascular disease, or may appear
in normal elderly subjects. MR imaging is widely used for
diagnosing such diseases clinically. Manual lesion segmen-
tation by trained experts is extremely time consuming, and
suffers from high intra-observer and inter-observer variabil-
ity. On FLAIR images WMLs show up as hyperintensi-
ties with respect to surrounding healthy white matter tissue.
However, their intensity range also overlaps with normal



gray matter (GM), causing the failure of automatic segmen-
tation methods based solely on image intensity. An infarct
is generally the result of a stroke that occurs when the blood
supply to the brain is interrupted.

On FLAIR images, infarcts have usually a hyperintense
area surrounding a necrotic part that has intensity similar to
the cerebrospinal fluid (CSF). Due to intensity similarities
with both CSF and GM, the automatic segmentation of in-
farcts is a challenging problem that was seldomly addressed
[11].

The training samples consist of FLAIR images without
pathologies belonging to 72 healthy subjects. Image pre-
processing involves skull stripping using the BET algorithm
implemented in FSL software library [12], and bias correc-
tion done using N3 [6]. The images are registered to a com-
mon template using the HAMMER registration algorithm
[10]. From all images, a predetermined axial slice is ex-
tracted and the experiments are performed on 2D images.

A simulated test set is created by selecting 5 images from
the training set and adding simulated lesions and infarcts on
these images. The remaining 68 images are used as the new
training set. Simulated lesions have a circular-like shape,
and a hyperintense Gaussian profile with intensities vary-
ing in a predefined interval. Simulated images are created
by inserting lesions independently in 3 different positions,
and with 3 different intensity ranges ([90,110], [100,120]
and [110,130]). Images containing infarcts are created in a
similar way. A hypointense area with intensity value 0 is in-
serted into the center of simulated lesions. Figure 3 shows
examples of simulated lesions and infarcts. Binary ground
truth masks are generated in order to be used in the assess-
ment of the method.

Three variations of the proposed method, with increasing
complexity, are used for generating the SM-reconstructed
image I ∗ from a given test image I 0. In the baseline
method (SMR1) a non-estimable subspace is replaced by a
randomly selected subspace, and the orthogonal distance to
PCA space is discarded, by setting `i = 0. In the second
method (SMR2) the selection strategy presented in section
2.3 is used in case of a non-estimable subspace. The third
method (SMR3) is based on SMR2, but the orthogonal dis-
tance to PCA space is preserved adaptively by calculating
`i for each subspace i . The performance of the proposed
method is compared with a voxelwise t-test method, a stan-
dard univariate statistical analysis technique.

An abnormality map is obtained by calculating the vox-
elwise difference |I 0 − I ∗| between the test image and the
SM-reconstructed image. For the t-test method, the abnor-
mality map consists of the t-score of each voxel. Receiver
operating characteristic (ROC) analysis is applied using the
abnormality map and the ground truth mask. The area under
the curve (AUC) score is calculated as a qualitative measure
of the segmentation performance.

Figure 3. Top raw: simulated lesions with intensity range
[100,120] and [110,130] from left to right, bottom: simulated in-
farcts with intensity ranges [100,120] and [110,130] on the bright
area , from left to right.

Figure 4. Average AUC scores for the segmentation of simulated
lesions (left) and simulated infarcts (right).

Figure 4 presents the average AUC scores obtained
by each method in segmentation of lesions and infarcts,
grouped by the intensity profiles of the simulated patholo-
gies. SMR3 method performed better than the other meth-
ods in all test cases, with the exception of lesions with low
intensity range. A qualitative analysis shows that the recon-
struction using the SMR3method succeeds in preserving the
original anatomy of the brain in healthy regions (Figure 5).

A test set with 33 images containing WMLs, and cor-
responding manual lesion masks extracted by an expert ra-
diologist, is also provided. We applied the SMR3 method
on 15 of these images that have the highest lesion load on
the selected slice. We obtained an average AUC score of
0.9816. Figure 6 shows an example reconstruction together
with the original test image and the corresponding manual
mask.



Figure 5. Sample results using method SMR3. Left to right: Test
image with simulated periventricular infarct, with intensity range
[100,120] on the bright area . SM-reconstructed image. Voxelwise
difference between the initial and reconstructed images (I 0 − I ∗)
.

Figure 6. Sample results using SMR3 method. Top row, left to
right: Test image containing WMLs. The manual lesion mask.
Bottom row, left to right: SM-reconstructed image. Voxelwise
difference between the initial and reconstructed images (I 0 − I ∗)
.

4. Conclusion

We aim to learn the normal variation of the healthy
anatomy, in order to detect abnormalities on a new image as
significant deviations from the normal variation. Learning
multivariate statistics of high dimensional images from a
limited number of training samples is a challenging task. In
this paper, we address the dimensionality problem by cap-
turing the statistics of a large number of subspaces, which
are more reliably estimable. We present an iterative strategy
for selecting subspaces in a multi-scale fashion. We also
present a model-constrained reconstruction method applied
within each subspace, for obtaining images consistent with

the learned subspace models. The final method is evaluated
on segmentation of lesions and infarcts on brain MR im-
ages, and obtained promising results. The proposed frame-
work is generic, and may also be applied to abnormality
detection problems in other domains.

In the future, non-linear dimensionality reduction meth-
ods like Kernel PCA [9] or Isomap [13] will be investigated,
in order to capture non-linearities in data while learning the
subspace models. Another perspective is to use other ba-
sis like wavelets or discrete cosine transform for extracting
subspaces.
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