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Rationale and Objectives. Treatment of brain neoplasms can greatly benefit from better delineation of bulk neoplasm
boundary and the extent and degree of more subtle neoplastic infiltration. Magnetic resonance imaging (MRI) is the pri-
mary imaging modality for evaluation before and after therapy, typically combining conventional sequences with more
advanced techniques such as perfusion-weighted imaging and diffusion tensor imaging (DTI). The purpose of this study is
to quantify the multiparametric imaging profile of neoplasms by integrating structural MRI and DTI via statistical image
analysis methods to potentially capture complex and subtle tissue characteristics that are not obvious from any individual
image or parameter.

Materials and Methods. Five structural MRI sequences, namely, B0, diffusion-weighted images, fluid-attenuated inver-
sion recovery, T1-weighted, and gadolinium-enhanced T1-weighted, and two scalar maps computed from DTI (ie, frac-
tional anisotropy and apparent diffusion coefficient) are used to create an intensity-based tissue profile. This is incorpo-
rated into a nonlinear pattern classification technique to create a multiparametric probabilistic tissue characterization,
which is applied to data from 14 patients with newly diagnosed primary high-grade neoplasms who have not received any
therapy before imaging.

Results. Preliminary results demonstrate that this multiparametric tissue characterization helps to better differentiate
among neoplasm, edema, and healthy tissue, and to identify tissue that is likely to progress to neoplasm in the future. This
has been validated on expert assessed tissue.

Conclusion. This approach has potential applications in treatment, aiding computer-assisted surgery by determining the
spatial distributions of healthy and neoplastic tissue, as well as in identifying tissue that is relatively more prone to tumor
recurrence.
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Treatment of brain neoplasms varies with their type,
grade, location, and extent, and often includes a combina-
tion of surgical resection and chemoradiation. This can
greatly benefit from better delineation of bulk neoplasm
boundary, as well as knowledge of the extent and degree
of neoplastic infiltration. The true boundary of many neo-
plasms is difficult to identify with conventional ap-
proaches, especially in gliomas that are diffuse and infil-

trative. Relatively advanced imaging strategies, such as
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perfusion-weighted imaging (PWI), magnetic resonance
spectroscopy (MRS), and diffusion tensor imaging (DTI),
have improved evaluation in this regard, but remain lim-
ited. Tissue characterization is difficult because neoplasms
are often heterogeneous, and different histopathologic
grades can be present throughout an individual neoplasm.
Because the treatment planning of brain neoplasms typi-
cally seeks to reduce risk for severe functional loss, large
portions of brain neoplasms may remain untreated or sub-
optimally treated such that time to recurrence shortens
and prognosis worsens.

Clinical decisions regarding glioma treatments rely, in
part, on magnetic resonance imaging (MRI) before and
after surgery as well as follow-up during and after che-
moradiation. Routine MRI sequences such as fluid-attenu-
ated inversion recovery (FLAIR) and contrast-enhanced
T1-weighted MR images are used to obtain estimates of
enhancing and nonenhancing tissue, as well as of edema
(ED) or gliosis. However, this process is time and labor
intensive, susceptible to inter-rater variability, and often
inaccurate, especially in the setting of treatment-related
necrosis versus recurrence/progression. Clinical decision
making has been aided by the efforts of the medical im-
age analysis community in developing MRI-based auto-
mated tumor detection and segmentation (1–9).

A simplified view of a brain neoplasm includes en-
hancing neoplasm/tumor (ET) tissue and nonenhancing
tissue (NET) (solid tissue) and ED (diffuse tissue). Be-
cause the manifestation of each of these tissue types var-
ies across subjects and has different underlying pathologic
substrates depending on the neoplasm type, there has
been growing interest in image-based objective identifica-
tion of these tissue types as well as possible infiltration.
For example, a combination of T1 (with and without in-
travenous contrast), T2-, and proton density (PD)-
weighted images have been used in a fuzzy clustering
framework to segment ET (6) and NET (5). FLAIR im-
ages show infiltrating neoplasm and ED with relatively
high contrast. Nonconventional imaging protocols, such as
diffusion-weighted imaging (DWI) and cerebral blood
volume (CBV) maps calculated from PWI, have demon-
strated the ability to discriminate between high- and low-
grade neoplasms and also to study prognosis or predict
outcome but are nonspecific in identifying tumor bound-
ary (10–12). DTI (13) has been used for determining fi-
ber tract deformation as a result of neoplasm growth (14–
17), as well as to study the progression or infiltration of
the neoplasm along white matter tracts (18,19). Some

studies have used anisotropy and diffusivity information
provided by fractional anisotropy and apparent diffusion
coefficient maps computed from DTI data for differentia-
tion of infiltrating neoplasm and ED (14,18–21). DTI
metrics have also shown potential in discriminating tumor
recurrence from radiation-induced necrosis (22).

A few key issues are apparent with regard to the po-
tential of multiparametric MRI in studying brain tumors.
First, although individual MR modalities provide informa-
tion about some aspects of the tumor, no single modality
is capable of providing a comprehensive tissue character-
ization. Properly combining such diverse MR protocols is
likely to enhance discriminatory power and specificity and
to better highlight the extent and degree of tumor infiltra-
tion. Second, tissue characterization that reveals the de-
gree and extent of infiltration is important for tumor char-
acterization in addition to bulk tumor segmentation; how-
ever, little has been done to identify the likelihood of
recurrence in the tissue surrounding the neoplasm, based
on multiparametric imaging. Third, most of the methods
developed have not used advanced pattern classification
techniques to discern the patterns of tissue types and infil-
tration or increase the objectivity of interpretation.

The present work proposes a multiparametric neoplas-
tic tissue characterization that incorporates high-dimen-
sional intensity features created from multiple MRI acqui-
sition protocols (structural MRI as well as DTI) into a
pattern classification framework, to obtain a voxel-wise
probabilistic spatial map called a “tissue abnormality
map” that reflects the likelihood that a given voxel (spa-
tial location) is healthy tissue, tumor, ED, neoplastic infil-
tration, or a combination thereof. Moreover, by using ma-
chine learning methods guided by the follow-up scans,
the likelihood of a region presenting tumor recurrence
after treatment is determined. By evaluating patients with
several different high-grade brain neoplasms and using
expert interpretation as a standard, it is demonstrated that
such probabilistic tissue characterization is able to better
differentiate neoplastic infiltration, ED, and healthy tissue
than any single MR modality. More generally, it has been
able to produce a subtle characterization of tumor tissue
and surrounding tissue and identify regions that later
present recurrence. The accuracy of segmentation has
been assessed on samples provided by experts. This study
is one of the first to investigate integration of multiple
MRI parameters via sophisticated nonlinear pattern classi-
fication methods to obtain a better characterization of the
tumor and the surrounding tissue, as well as to investigate
imaging profiles of tissue that are relatively more likely to

present tumor recurrence in follow-up scans.

967



VERMA ET AL Academic Radiology, Vol 15, No 8, August 2008
MATERIALS AND METHODS

We propose a multiparametric framework for tissue
classification and production of probabilistic maps of tis-
sue abnormality and tumor recurrence. Intensity-based
features computed from expert-defined training samples
are integrated via a pattern classification technique into a
multiparametric imaging profile that aims at classifying
brain tissue into each of the following classes: ET, NET,
ED, white matter (WM), gray matter (GM), and cerebro-
spinal fluid (CSF). This multiparametric tissue profile for
neoplasms using preoperative imaging can be extended to
postoperative follow up scans to determine regions that
demonstrate high likelihood of tumor recurrence. This
study used an institutional review board–approved proto-
col that was Health Insurance Portability & Accountabil-
ity Act compliant. Written informed consent for the rou-
tine MR examination was obtained from all patients.

Data Acquisition
We used two datasets, one for creating and validating

the tissue abnormality map and the other for generating
the recurrence map. In the former, we only have scans of
one time point, and in the latter, we have longitudinal
scans, across several time points, before and after surgery.

Creation of tissue abnormality map.—The population
studied consisted of 14 patients with newly diagnosed
primary high-grade brain tumors (eight Grade 3 and seven
Grade 4) who had not received any therapy before imag-
ing. The MR data for each patient were acquired either on a
3-T Scanner (Siemens, Trio; Siemens Medical System, Er-
langen, Germany) or on a 1.5-T (GE Medical Systems, Gen-
esis Trio; GE, Milwaukee, WI) scanner; the scanner assign-
ment was random (not related to any patient characteristics).
The following sequences were acquired: T1-weighted (T1)
(256 � 192 � 160, resolution 0.9765 � 0.9765 � 1, repeti-
tion time [TR]: 1,620, echo time [TE]: 3.87), T2 (512 �
512 � 19, resolution 0.4297 � 0.4297 � 6.5, TR: 4,000,
TE: 85), FLAIR (256 � 256 � 46, resolution 0.9375 �
0.9375 � 3, TR: 1,000, TE: 147), gadolinium-enhanced T1-
weighted (GAD) (256 � 256 � 46, resolution 0.9375 �
0.9375 � 3, TR: 1,000, TE: 147), and DTI (128 � 128 �
40, resolution: 1.72 � 1.72 � 3.0, 12 gradient directions).
Because studies were not always performed on the same
scanner because of workflow constraints, there was some
variation in measurements (eg, TR, TE). However, special
effort was made to make the protocols highly comparable
across scanners to avoid introducing confounding variability

in the images. For creating the multiparametric tissue profile,
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we used five structural MR acquisition protocols, namely,
DWI, B0, FLAIR, T1, and GAD, and two scalar maps com-
puted from the diffusion tensor images: fractional anisotropy
and the apparent diffusion coefficient (13). Figure 1 shows
representative slices from each of the acquisition protocols.

Creation of recurrence maps.—The cases chosen are
representative of tumor recurrence as a result of tumor
infiltration into surrounding healthy tissue. Our frame-
work focuses on these ambiguous regions that have a
mixture of neoplastic and normal tissue characteristics
with the aim of classifying them to one of these two
classes of normal and neoplastic tissue. The selection of
the patients followed three criteria.

1. No evidence for residual enhancing tumor existed
after the first resection (based on the clinical reports
created by examining the postoperative images ac-
quired within the same day).

2. The patients showed obvious recurrence confirmed
by pathology and a second craniotomy.

3. All of the seven MR protocols (required for the
multiparametric tissue profile discussed previously)
were available in the preresection stage; not all pro-
tocols were required in the postresection stage. Spe-
cifically, the search in the postresection images for

Figure 1. A representative slice from each of the seven co-reg-
istered magnetic resonance modalities used in creating the multi-
modality tissue profile. ADC, apparent diffusion coefficient; B0,
baseline (T2-weighted); DWI, diffusion weighted image; FA, frac-
tional anisotropy; FLAIR, fluid attenuated inversion recovery; GAD,
gadolinum-enhanced T1-weighted; T1, T1-weighted.
regions with characteristics of recurrence was
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mostly based on visual evaluation of FLAIR, T2
and GAD images, and CBV maps (computed from
perfusion images). The CBV maps help distinguish
between radiation treatment effects and tumor recur-
rence. None of the images from the postresection
scans (including CBV maps) was used in the train-
ing for creating the multiparametric profile (proba-
bilistic map).

Of the available brain tumor cases, three cases met all
of these criteria and have been included.

Preprocessing
The images are skull stripped and smoothed using the

public software package FSL (23). For each of the pa-
tients, all the modalities are rigidly co-registered to the
T1-weighted image using FSL’s registration algorithm,
called FLIRT (24) (rigid registration suffices as it is
within the same patient). Data are made comparable
across patients using histogram matching of intensities.
To create the feature vectors, we fuse information from
the same voxel across different imaging protocols of the
same person. To extend the profile to a recurrence map,
we register the follow-up (postresection) images to the
preresection image using deformable registration (25),
because nonlinear deformations are introduced due to the
relaxation of tumor mass effect. The co-registration of all
temporal images is important to keep track of changes
that reflect tumor progression and for mapping the region
of tumor recurrence from the post- to preoperational
space.

Design of Tissue Abnormality Feature Vector
We define voxel-wise intensity features using the

aligned and preprocessed MRIs. The intensity feature vec-
tor for each voxel x� in the three-dimensional image vol-
ume I, is defined by concatenating all seven image val-
ues:

vx�
→ � �Ix�

�ADC�, Ix�
�B0�, Ix�

�DWI�, Ix�
�FA�, Ix�

�FLAIR�, Ix�
�T1�, Ix�

�GAD��T

where Ix�
�M� denotes the intensity of image of modality M at

voxel x�. These feature vectors are defined at each voxel
in the training samples. To render this feature vector
more robust to noise, we incorporate neighborhood infor-
mation by using four of its neighbors. Seven-dimensional
intensity features for these 5 voxels are stacked into a

long vector (35-dimensional), which is then used as a
feature vector.
Selection of the training samples.—Training samples

are identified by an expert neuroradiologist (co-author)
by delineating small portions of the tumor tissue types
of ET, NET, and ED using the FLAIR and GAD-T1
images. The training samples for ET, NET, and ED are
picked very conservatively (only those that have a high
certainty according to the expert) as demarcated in red
in Fig. 2 (columns 1 and 2). We obtain training sam-
ples for the healthy tissue by automatically segmenting
the healthy portion of the brain into three classes: WM,
GM, and CSF using a k-means segmentation algorithm
provided by FSL, called FAST (26), excluding regions
close to the tumor. By segmenting the healthy portion
of the brain during training, we are able to build a dif-
ferent model for each of the WM, GM, and CSF
classes, and therefore avoid the repeated application of
a segmentation method, such as FAST, to all new com-
ing brain tumor images. It may be noted that the algo-
rithm is being designed to emulate the knowledge of
the expert and hence depends on the expert’s definition
of the regions. Using multiple experts will increase the
size of training samples and is expected to lead to bet-
ter classifiers. However, conflicting regions of defini-
tions between the experts indicate areas with low cer-
tainty about the tissue type. For a more consistent
training set, these areas need to be removed from the
definition before using them as training samples.

Creation of tissue classifiers and tissue probability
maps.—We investigated several pattern classification
techniques available in the literature that can help cre-
ate tissue classifiers. We found that linear multivariate
pattern classification techniques such as principal com-
ponent analysis are easier to apply but they create
“global” features for each class that are insufficiently
representative for discriminating one tissue class from
another, especially when the difference between two
classes is very subtle, which is the case in tumor com-
ponents (NET and ED) and in infiltration. Support vec-
tor machines (SVM) (27) were found to optimally clas-
sify the data into two or more classes (28,29). We con-
structed two kinds of classifiers using two different
nonlinear classification strategies optimized for the re-
spective application: 1) intrapatient classifier: Bayesian
classifiers (30) trained using expert defined training
samples from within a single patient; and 2) interpa-
tient classifier: SVM classifiers trained by combining
samples from several patients. For the purpose of com-

parison, Bayesian classifiers are also constructed using
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data from several patients. Validation of the classifiers
is done by creating classifiers using only part of the
expert defined training samples, and then applying the
classifiers to those excluded samples to determine how
well the classification agrees with the expert’s interpre-
tation (27). The amount of agreement is referred to as
the classification accuracy.

Intrapatient Classification

We use the Bayesian classification method, to design
discriminant functions (30) for each of the six tissue
classes for a subject, which we refer to as the respec-
tive tissue class classifiers. Different discriminant func-
tions designed for each of the six tissue classes (ie,
ET, NET, ED, WM, GM, and CSF), evaluated at each
voxel, provide the estimate of the probability of that
voxel belonging to the respective class, and produce a
three-dimensional voxel-wise probability map, called a

Figure 2. Intrapatient Bayesian classification framework applied t
show examples of training samples conservatively chosen by the e
(ET), or nonenhancing neoplasm/tumor (NET). Columns 3–5 are the
the upper left corners denote the classification rates after segment
the lack of training samples for that tissue class and hence the ina
The color bar for the probability maps are in block (2, 4). Column 6
shown next to the color bar.
“tissue abnormality map.” There is one tissue abnor-
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mality map pertaining to each of the six tissue classifi-
ers produced by assuming multivariate Gaussian distri-
bution for the features. We can obtain tissue segmenta-
tion by assigning the voxel to the class having the
highest discriminant value among the six classes. This
method of tissue classification is optimal when training
samples are available for the patient whose tissue
needs to be characterized. It effectively replicates the
experts’ samples to identify regions that are similar.
However, only tissue classes (ET, ED, NET) identified
by the expert can be characterized for that patient, and
because of the conservative nature of sample selection,
expert identification may not be provided for all alter-
nate tissue types. This requires pooling samples from
several patients and, because of the high variability
across individuals, Bayesian classification with its
multinomial Gaussian assumption does not provide ad-

ee patients. Each row corresponds to a patient. Columns 1–2
t for tissues samples of edema (ED), enhancing neoplasm/tumor
ability maps for ED, NET, and ET, respectively. The numbers in
(see column 6). A missing image such as in (2, 4) block indicates
of the classifier to produce the corresponding probability map.
ws the segmented image with the color coding of the tissues
o thr
xper
prob

ation
bility
sho
equate classification.
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Interpatient Classification
We combine training samples from across patients, to

obtain more generalized tissue classification using SVM.
We define six classifiers, one pertaining to each of
healthy (WM, GM, and CSF) and neoplasm (ET, NET,
and ED) classes (27). Each classifier is created using two
sets of training samples: one containing samples of the
tissue type for which the classifier is being created and
the second class containing samples from all other tissue
classes combined together. This is referred to as the one-
versus-all framework of creating a classifier and details
can be found elsewhere (27). When these classifiers are
applied to features defined at voxels in a new brain, they
produce a number (SVM classification score) indicative of
the class membership (tissue type). This SVM score is
then converted to a pseudo-probability score p_platt using
Platt’s method (31). Then the pseudo-P values are nor-
malized: p_normalized � p_platt/sum(p), where sum(p-
platt) is the sum of pseudo-probabilities for all classes.
These voxel-wise pseudo-probability scores form the tis-
sue abnormality map pertaining to that classifier. Re-
sponses from the classifiers are combined to obtain tissue
segmentation (ie, labels are assigned according to the

Figure 3. Maps of tumor recurrence for three cases. For each ca
gions identified as suspected of possible recurrence. Bottom row,
samples for healthy tissue; burgundy are some of the regions iden
combined with cues obtained from elastic registration. Bottom row
voxel-wise map of likelihood of tumor recurrence. The color bar is
mality. Red arrows are used to indicate regions in which recurrenc
maximum probability [after normalization]). The classifi-
ers are validated using a similar framework to the one
adopted in intrapatient classification.

Design of Recurrence Map
Figure 3 provides examples of recurrence maps for

three cases. The top row shows slices from postresection
scans: CBV maps computed from perfusion images and
T1 images (with/without contrast) that indicate regions of
likelihood of recurrence characterized by increased en-
hancement in GAD (cases 2, 3) and high CBV (case 2) or
hypointensity in T1 (cases 1, 3). These are regions indica-
tive of high risk and are pointed out by green arrows.
Visual cues gathered from these scans were combined
with the cues obtained by elastically registering the pos-
tresection scans with the preresection scans (shown in
bottom row, left) to account for tissue deformation caused
by resection, and to guide the determination of the posi-
tion of these probable recurrence regions in the preresec-
tion scans (marked in burgundy in bottom row). Because
no evidence for residual enhancing tumor existed after the
resection, these regions were likely to be on or outside
the visible tumor boundary in the preresection scans and
to have developed an abnormality over time, possibly

e top row shows postresection scans; green arrows point to re-
reresection scans showing the regions used for training; blue are
by an expert as having recurrence in postresection scans when
t: Probability maps using interpatient classifiers that provide a
ame as that of Fig. 2 with red indicating higher degree of abnor-
ually occurred in follow-up scans.
se, th
left: P
tified
, righ
the s
from tumor infiltration. Samples for the healthy class de-
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picted in blue (Fig. 3, bottom row) were delineated close
to the tumor as well as away from it to sample the vari-
ability fully. These samples were used to train a two-class
SVM classifier. At each instance of training, one patient
was left out. Then the classifiers, applied to this left-out
patient, produced voxel-wise SVM scores of the tissue at
that voxel demonstrating recurrence. These voxel-wise
SVM scores comprise a recurrence probability map that
is indicative of the voxel-wise likelihood of recurrence.

RESULTS

The experiments were conducted with the aim of iden-
tifying the applicability of the multiparametric framework
in distinguishing between neoplastic tissue types in pa-
tients and identifying regions that have a high likelihood
of recurrence. In all these experiments, our aim was to
produce three-dimensional voxel-wise spatial probability
maps for each tumor tissue type; however, we also pro-
duced maps of hard segmentation to validate the results
visually and empirically. We used classification rates and
sensitivity and specificity values, computed on some of
the expert-defined samples excluded from training, to pro-
vide a measure of degree of certainty in identifying the
tumor and the healthy tissue. Classification rate was the
percentage of correctly classified voxels with respect to
the expert defined samples excluded from training avail-
able for that class. Therefore, there was one value for
each of the six classes. We took the average over all the
subjects for that class to produce the average values for

Table 1
Average (avg) Classification Rates and their Standard Deviation
Over All Subjects for Intrapatient and Interpatient Framework U

Classificat

ED ET NET

Bayesian classification (intrapatient)
Avg 97.03 96.39 93.05
Stdev 3.18 3.4 11.82

Bayesian classification (interpatient)
Avg 53.86 86.56 51.11
Stdev 47.59 27.74 43.86

SVM classification (interpatient)
Avg 93.38 88.79 34.01
Stdev 8.75 29.03 38.71

CSF, cerebrospinal fluid; ED, edema; ET, enhancing neoplasm/tu
support vector machines; WM, white matter.
each of the classes.
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The sensitivity and specificity are calculated on the two-
class problem by grouping together the tumorous tissue
types ED, ET, and NET into one class (positive class) and
the healthy tissue types CSF, GM, and WM into another
class (negative class), respectively. The sensitivity and speci-
ficity show the percentage of correctly classified positive and
negative samples, respectively. Sensitivity � TP * 100/(TP
� FN) and Specificity � TN * 100/(FP � TN), where TP,
TN, FN, and FP stand for true positive, true negative, false
negative, and false positive, respectively.

Intrapatient Tissue Classification
Figure 2 shows the results of applying the Bayesian clas-

sification framework (see Creation of Tissue Classifiers and
Tissue Probability Maps) on 3 of the 14 patients. Each row
corresponds to a different patient and shows examples of
expert-defined neoplastic regions that are used as training
samples, the tissue probability maps, as well as hard tissue
segmentation obtained from these probability maps. The top
left corner of each probability map gives the classification
accuracy for that tissue in that patient. For some patients,
where the expert was unable to define certain tissue types,
such as NET in rows 2 and 3 of Fig. 2, no probability maps
could be created. The average classification rates over all
datasets can be found in row 1 of Table 1.

Interpatient Tissue Classification
The comparative results of applying the interpatient,

Bayesian, and SVM tissue classifiers can be found in Ta-
ble 1, rows 2 and 3, respectively. As can be observed,

ev) of the Classification Rates, Sensitivity, and Specificity,
Bayesian and SVM Classifications

ates
Sensitivity Tumor

vs. Healthy
Specificity Tumor

vs. HealthyF GM WM

68 74.86 82.95 91.84 99.57
72 6.95 7.73 6.01 0.63

31 66.78 76.06 75.62 94.57
82 9.22 15.05 36.14 6.12

34 72.21 85.33 87.54 97.03
9 12.08 9.45 15.58 3.26

GM, gray matter; NET, nonenhancing neoplasm/tumor; SVM,
(std
sing

ion R

CS

89.
21.

82.
15.

91.
7.

mor;
Bayesian classification (row 2) performed poorly in the
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interpatient framework (ie, in the case of increased variabil-
ity in the data) because of the combination of training sam-
ples from several patients compared to the intrapatient
Bayesian classification (row 1). By combining the training
samples from different patients, we can combine information
from patients within a grade and apply it to other patients of
the same grade. Empirically, we found that keeping within
the grade produces probability maps that are high in speci-
ficity. The average sensitivity and specificity for all patients
can be found in the last columns of Table 1.

For visual assessment, we show the application of the
interpatient tissue classifiers on a case with nonenhancing
tumor (Fig. 4) and on a case with enhancing tumor (Fig. 5).
The first column in both figures provides slices from the
FLAIR and GAD images to indicate the extent and compo-
sition of the tumor. The top row 1 (columns 2–4 in Fig. 4
and columns 3–6 in Fig. 5) shows the probability maps and
tissue segmentation map obtained by applying the SVM
classifiers (see Creation of Tissue Classifiers and Tissue

Figure 4. Application of SVM classification (to
the neoplasm represented in column 1 by trainin
chines (SVM) classifiers combining information f
edema (ED) and nonenhancing neoplasm/tumor
ated from this patient alone identify the whole n
color coding is same as that of Fig. 2. FLAIR, flu
enhanced T1-weighted.
Probability Maps) to this patient and the bottom row pre-
sents the Bayesian classifier (created using training samples
from all patients except this patient). The comparative classi-
fication rates and sensitivity and specificity for these patients
are given in Table 2. In Figure 4, there was no ET detected
in the tumor; the NET was oversegmented by the Bayesian
framework (as is also evident from the tissue probability
maps for NET, which shows high false positives). The entire
tumor was classified as NET failing to detect the tissue dif-
ferences. The SVM framework was able to characterize the
tumor as a combination of ED and NET and the dark core
was classified as CSF, perhaps because of the nature of the
tissue. In Figure 5, we see the example of a case in which
the Bayesian framework provides better segmentation, which
is also reflected in the classification accuracy in Table 2.
However, SVM performs better in determining healthy tis-
sue with low false positives.

Analyzing Patterns of Tumor Recurrence
As explained in Design of Recurrence Map, recur-

) and Bayesian classification (bottom row) of
ross patients. Although support vector ma-
several patients are able to identify both
), like the expert, the Bayesian classifiers cre-
stic region as NET (unlike the expert). The
tenuated inversion recovery; GAD, gadolinium-
p row
g ac

rom
(NET
eopla
id at
rence classifiers created from two patients was then
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applied to the features computed from the preresection
scans of the third patient, to create a recurrence proba-
bility map, indicative of regions with high likelihood
of recurrence. Figure 3, bottom row, right, shows the
recurrence probability maps for three cases. Although
these results are preliminary and the number of patients
is very small to be able to draw a conclusion, it can be
observed that regions that were identified as recurrence
in these patients, actually showed high probability (red)
of abnormality in the preresection scans.

DISCUSSION

In this study, we have created a multiparametric profile
for brain tumors, aiming at a comprehensive tissue char-
acterization. Both classification approaches (intra- and
interpatient with Bayesian and SVM classification) have
the same underlying framework, namely combining con-
ventional structural MRI with DTI, to train classifiers for
the tumor types of enhancing and nonenhancing tumor,
ED, and healthy tissue. The distinction of the neoplastic

Figure 5. Application of support vector machines (SVM) classifica
plasm represented in column 1 by training across patients using tr
columns 3–6) is more conservative than the Bayesian classification
ability maps using the Bayesian classification seem to identify the
and confuse the nonenhancing neoplasm/tumor (NET) with cerebro
ence of NET (green) in the segmented image on top row, along wit
attenuated inversion recovery; GAD, gadolinium-enhanced T1-weig
tissue from healthy tissue, as well as the identification of

974
different tumor components and ED, as can be seen in
Figures 4 and 5, indicates that this multiparametric frame-
work effectively integrates multiprotocol information into
a comprehensive tissue profile that can systematically
evaluate the extent and heterogeneous composition of the
tumor, and accurately replicate the expert’s outlining of
these regions. Thus, knowing the probable extent of ab-
normality of the neoplasm in terms of enhancing or non-
enhancing tumor type or ED will help better target the
treatment of these regions. Existing computerized meth-
ods for diagnosis suffer from the absence of validation
because of the lack of ground truth. Conventionally, his-
topathologic examination following a biopsy has been the
accepted ground truth. However, its outcome depends on
the region sampled and, given the heterogeneity of the
tumor, may wrongly indicate the grade of the tumor and
the subsequent treatment. The probability measures of our
framework are defined on each voxel and therefore cap-
ture heterogeneous patterns of tissue pathology. More-
over, these maps may provide sufficient premise to histo-
logically test regions with higher probability of neoplastic

(top row) and Bayesian classification (bottom row) of the neo-
samples shown in column 2. The SVM classification (top row,

tom row, columns 3–6) and better matches the expert. The prob-
a (ED) well, oversegment the enhancing neoplasm/tumor (ET),

al fluid (CSF). The SVM classification is able to capture the pres-
 and ET. The color coding is same as that of Fig. 2. FLAIR, fluid
.

tion
aining

(bot
edem
spin
h ED
content. This would aid in making clinical decisions.



hich

Academic Radiology, Vol 15, No 8, August 2008 TISSUE CHARACTERIZATION OF BRAIN NEOPLASMS
Tissue that shows mixture of healthy and neoplastic
tissue, with or without ED, may be a precursor to the de-
velopment of a neoplasm in the future. This is precisely
the aim of the experiments that we have conducted on
cases that have demonstrated recurrence (Fig. 3). By iden-
tifying regions in the preresection scan that correspond to
the areas of recurrence in the follow-up scans, we have
characterized the imaging profile of abnormal tissue that
transformed to a neoplasm. Although we used a small
dataset for the identification of regions of high abnormal-
ity and high tumor recurrence probability, the quantifica-
tion of the degree of abnormality by the probability maps
in this manner illustrates the concept of anticipating sites
of recurrence requiring more aggressive or alternate thera-
pies. Thus, although we may not have always accurately
determined the regions of recurrence, we have been able
to demonstrate that the regions we predicted to recur,
based on the probabilistic maps produced by the classifi-
cation framework, did actually progress to recurrence.

We have proposed intra- and interpatient approaches to
the characterization of neoplastic tissue, based on very
conservative training samples identified by experts. The
approach that is to be finally adopted depends on the ap-
plication. If the aim is to replicate the understanding of
the expert for a particular patient, as may be the case in a
surgery-related decision, then the intrapatient Bayesian
framework is appropriate (as can be seen in the classifica-
tion rates and the overall good segmentation maps in Fig.
2). Although useful for individual patient analysis, such a
profile can only be applied to future scans of that patient
alone, due to the fact that the profile will not be able to
capture the variability across patients. An analysis of the

Table 2
Classification Rates Sensitivity and Specificity of Applying the
Two Patients Shown in Figures 4 and 5

Patient in Figure

Classification Rates

ED ET NET CSF

Fig. 4
SVM 79.78 NA 56.61 78.11
Bayes 2.28 NA 100 37.01

Fig. 5
SVM 100 11.56 NA 99.9
Bayes 100 99.03 NA 97.87

CSF, cerebrospinal fluid; ED, edema; ET, enhancing neoplasm/tu
support vector machines; WM, white matter.

Overall, the SVM classification performs better than the Bayesian
ples being selected through an automated segmentation method, w
probability and the segmentation maps reveals that the
framework might oversegment tissue types such as ET in
patient of row 3. Additionally, the intrapatient Bayesian
framework is unsuitable for determining a tissue type that
the expert is unable to identify, or even do the character-
ization of the patient for which no training samples are
available. This is especially the case when there is a large
mass of NET and ED, which is difficult to distinguish
even by the expert. When treatment decisions need to be
made about surrounding nonenhancing tissue, it is impor-
tant to have a tissue characterization that will highlight
the regions of abnormality. This was the motivation to
develop the interpatient framework.

The evaluation of the SVM and Bayesian classification
methods in combining tissue samples across patients indi-
cates that SVM performs better. A comparison of rows 2
and 3 of Table 1 shows that the Bayesian classifier has
lower sensitivity than the SVM, and also demonstrates
increased classification accuracy (with lower variability)
for the SVM classifier in all tissue types except NET.
Edema identification shows marked improvement. En-
hancing neoplasm/tumor is also identified with high clas-
sification accuracy based on the expert defined samples.
The comparison reveals that NET was the most difficult
tissue type to characterize both by the computerized algo-
rithm as well as the experts, demonstrated by the fact that
the expert identified the least training samples for NET.
This is indicative of the variability in these regions across
patients. There is a decrease in the average classification
rate of NET from the interpatient Bayesian to the SVM
classification, although both are low, which could be due
to the low number of training samples to which SVM is
sensitive. Based on the improved performance in the

and Bayesian Interpatient Classification Framework to the

Sensitivity Tumor
vs. Healthy

Specificity Tumor
vs. HealthyGM WM

1.99 84.36 71.07 99.49
6.25 60.58 99.98 77.6

4.66 96.16 81.59 99.97
2.84 61.26 99.02 98.11

GM, gray matter; NET, nonenhancing neoplasm/tumor; SVM,

low classification rates of healthy tissue are due to these sam-
may have led to errors in training.
SVM

8
5

5
7

mor;

. The
other tissue classes, we expect SVM to do better when
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we add training samples in the future. Although it may
seem that the intrapatient Bayesian classification performs
very well in the case of NET, it should be noted that this
is only true for patients in whom NET has already been
identified by an expert and the average classification rates
have been computed only on these few subjects. Analysis
of the NET classification results with interpatient classifi-
cation reveals that it is mostly misclassified as ED, GM,
and CSF or a possible combination of these. This could
be explained by the fact that NET could have healthy
tissue combined with neoplasm and ED, and NET could
also be easily misclassified by an expert as well. The su-
periority of interpatient classification reveals that a combi-
nation of information from several patients is crucial for
generalizability when a new patient is to be tested in this
framework. We propose to use additional features and
better SVM based classifiers to pursue interpatient classi-
fication of tumor types.

CONCLUSIONS

In summary, we have tested a multiparametric frame-
work for neoplastic tissue characterization using multiple
MR acquisition protocols. This abnormality profile helps
distinguishing among neoplastic components, ED, and
normal tissue, and creating a probabilistic map that indi-
cates the likelihood of tumor recurrence. We expect that
our tissue classification will be able to 1) provide a better
understanding of the spatial distribution of cancer, thereby
assisting in treatment planning either via resection or fo-
cused radiotherapy and radiosurgery; 2) potentially en-
hance the physician’s ability to diagnose and segment the
tumor; and 3) help identify tissue that can convert to tu-
mor in follow-up cases after resection. The method can
thus potentially be used to study tissue changes intro-
duced as a result of radiotherapy, chemotherapy, and
medication. Future studies are necessary to provide a
more extensive training basis for the classifiers and to
further validate the performance of this computer analysis
methodology. We also propose to use feature selection
schemes to determine the contribution of each of the mo-
dalities, so that the modalities best for tissue characteriza-
tion can be identified and the acquisition protocol stream-
lined.
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